Acta Geodaetica et Cartographica Sinica ›› 2023, Vol. 52 ›› Issue (11): 1917-1928.doi: 10.11947/j.AGCS.2023.20220490
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
ZHAO Xuhui1, XIE Mengjie1, YANG Biao2, YANG Gang3, GAO Zhi1
Received:
2022-08-09
Revised:
2023-04-30
Published:
2023-12-15
Supported by:
CLC Number:
ZHAO Xuhui, XIE Mengjie, YANG Biao, YANG Gang, GAO Zhi. A method for crack detection and sample generation based on low rank representation and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1917-1928.
[1] 李清泉, 张德津, 汪驰升, 等. 动态精密工程测量技术及应用[J]. 测绘学报, 2021, 50(9):1147-1158. DOI:10.11947/j.AGCS.2021.20210172. LI Qingquan, ZHANG Dejin, WANG Chisheng, et al. Technology and applications of dynamic and precise engineering surveying[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1147-1158. DOI:10.11947/j.AGCS.2021.20210172. [2] 姚连璧, 秦长才, 张邵华, 等. 车载激光点云的道路标线提取及语义关联[J]. 测绘学报, 2020, 49(4):480-488. DOI:10.11947/j.AGCS.2020.20190241. YAO Lianbi, QIN Changcai, ZHANG Shaohua, et al. Road marking extraction and semantic correlation based on vehicle-borne laser point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):480-488. DOI:10.11947/j.AGCS.2020.20190241. [3] 续东, 柳景斌, 花向红, 等. 道路空间特征与测量距离相结合的LiDAR道路边界点提取算法[J]. 测绘学报, 2021, 50(11):1534-1545. DOI:10.11947/j.AGCS.2021.20210244. XU Dong, LIU Jingbin, HUA Xianghong, et al. A road curb points extraction algorithm combined spatial features and measuring distance[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11):1534-1545. DOI:10.11947/j.AGCS.2021.20210244. [4] CHEN Chen, LI Zhilin, LI Songnian, et al. From digitalized to intelligentized surveying and mapping:fundamental is-sues and research agenda[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):148-160. [5] 李德仁, 洪勇, 王密, 等. 测绘遥感能为智能驾驶做什么?[J]. 测绘学报, 2021, 50(11):1421-1431. DOI:10.11947/j.AGCS.2021.20210280. LI Deren, HONG Yong, WANG Mi, et al. What can surveying and remote sensing do for intelligent driving?[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11):1421-1431. DOI:10.11947/j.AGCS.2021.20210280. [6] 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8):939-953. DOI:10.11947/j.AGCS.2019.20190125. LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):939-953. DOI:10.11947/j.AGCS.2019.20190125. [7] YU Y, LI J, GUAN H, et al. 3D crack skeleton extraction from mobile LiDAR point clouds[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City:IEEE, 2014:914-917. [8] YU Yongtao, GUAN Haiyan, JI Zheng. Automated detection of urban road manhole covers using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6):3258-3269. [9] 成斌, 管海燕, 季秋菊, 等. 车载LiDAR数据的道路裂缝信息自动提取[J]. 测绘科学, 2018, 43(8):130-134, 140. CHENG Bin, GUAN Haiyan, JI Qiuju, et al. Automatic extraction of pavement cracks information using mobile LiDAR data[J]. Science of Surveying and Mapping, 2018, 43(8):130-134, 140. [10] 朱春省. 基于结构光的路面裂缝检测关键技术研究[D]. 南京:南京航空航天大学,2017. ZHU Chunxing. Research on key technologies of pavement crack detection based on structured light[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017. [11] LAURENT J, TALBOT M, DOUCET M. Road surface inspection using laser scanners adapted for the high precision 3D measurements of large flat surfaces[C]//Proceedings of 1997 International Conference on Recent Advances in 3-D Digital Imaging and Modeling.Ottawa:IEEE, 2002:303-310. [12] LAURENT J, LEFEBVRE D, SAMSON E. Development of a new 3D transverse laser profiling system for the automatic measurement of road cracks[C]//Proceedings of 2008 Symposium on Pavement Surface Characteristics.Portoroz:[s.n.],2008. [13] MONTI M. Large-area laser scanner with holographic detector optics for real-time recognition of cracks in road surfaces[J]. Optical Engineering, 1995, 34(7):2017-2023. [14] WANG K C P, GONG W. Automated pavement distress survey:a review and a new direction[C]//Proceedings of 2002 Pavement Evaluation Conference.[S.l.]:IEEE,2002,21-25. [15] HOU Zhiqiong, WANG K C P, GONG Weiguo. Experimentation of 3D pavement imaging through stereovision[C]//Proceedings of 2007 International Conference on Transportation Engineering. Chengdu:[s.n.],2007. [16] WANG K C P,GONG W. Automated real-time pavement crack detection and classification[R].Fayetteville:University of Arkansas, 2007. [17] NEJAD F M, ZAKERI H. An optimum feature extraction method based on wavelet-radon transform and dynamic neural network for pavement distress classification[J]. Expert Systems With Applications, 2011, 38(8):9442-9460. [18] QUINTANA M, TORRES J, MENÉNDEZ J M. A simplified computer vision system for road surface inspection and maintenance[J].IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3):608-619. [19] 黄建平. 基于二维图像和深度信息的路面裂缝检测关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2013. HUANG Jianping. Research on key technologies of pavement crack detectionbased on 2D image and depth information[D]. Harbin:Harbin Institute of Technology,2013. [20] ACOSTA J A,FIGUEROA J L, MULLEN R L. Low-cost video image processing system for evaluating pavement surface distress[J].Transportation Research Record,1992,1348:63-72. [21] LI Qingquan, LIU Xianglong. Novel approach to pavement image segmentation based on neighboring difference histogram method[C]//Proceedings of 2008 Congress on Image and Signal Processing.Sanya:IEEE, 2008:792-796. [22] OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]//Proceedings of the 17th European Signal Processing Conference. Glasgow:IEEE,2015:622-626. [23] KASEKO M, RITCHIE S. A neural network-based methodology for pavement crack detection and classification[J].Transportation Research Part C:Emerging Technologies, 1993, 1(4):275-291. [24] LI Peng, WANG Chao, LI Shuangmiao, et al. Research on crack detection method of airport runway based on twice-threshold segmentation[C]//Proceedings of the 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC).Qinhuangdao:IEEE, 2016:1716-1720. [25] CHENG H D, CHEN J R, GLAZIER C, et al. Novel approach to pavement cracking detection based on fuzzy set theory[J]. Journal of Computing in Civil Engineering, 1999, 13(4):270-280. [26] TOMIKAWA T. A study of road crack detection by the meta-genetic algorithm[C]//Proceedings of 1999 IEEE Africon Conference in Africa.Cape Town:IEEE, 2002:543-548. [27] TANG Jinshan, GU Yanliang. Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis[C]//Proceedings of 2013 IEEE International Conference on Systems, Man, and Cybernetics.Manchester:IEEE, 2014:3026-3030. [28] YAN Maode, BO Shaobo, XU Kun, et al. Pavement crack detection and analysis for high-grade highway[C]//Proceedings of the 8th International Conference on Electronic Measurement and Instruments.Xi'an:IEEE, 2007:4-548. [29] SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]//Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems. Hague:IEEE, 2014:2039-2044. [30] MEDINA R, LLAMAS J, ZALAMA E, et al. Enhanced automatic detection of road surface cracks by combining 2D/3D image processing techniques[C]//Proceedings of 2014 IEEE International Conference on Image Processing.Paris:IEEE, 2015:778-782. [31] KAPELA R, ŚNIATAŁA P, TURKOT A, et al. Asphalt surfaced pavement cracks detection based on histograms of oriented gradients[C]//Proceedings of the 22nd International Conference Mixed Design of Integrated Circuits & Systems.Torun:IEEE, 2015:579-584. [32] ZHOU Jian, HUANG P S, CHIANG Fupen. Wavelet-based pavement distress detection and evaluation[J]. Optical Engineering, 2006, 45(2):027007. [33] SUBIRATS P, DUMOULIN J, LEGEAY V, et al. Automation of pavement surface crack detection using the continuous wavelet transform[C]//Proceedings of 2006 International Conference on Image Processing.Atlanta:IEEE, 2007:3037-3040. [34] SONG K Y, PETROU M, KITTLER J. Texture crack detection[J].Machine Vision and Applications, 1995, 8(1):63-75. [35] CHANDA S, BU Guoping, GUAN Hong, et al. Automatic bridge crack detection-a texture analysis-based approach[C]//Proceedings of 2014 IAPR Workshop on Artificial Neural Networks in Pattern Recognition.Berlin:Springer, 2014, 193-203. [36] XU Wei, TANG Zhenmin, ZHOU Jun, et al. Pavement crack detection based on saliency and statistical features[C]//Proceedings of 2013 IEEE International Conference on Image Processing. Melbourne:IEEE, 2014:4093-4097. [37] AVILA M, BEGOT S, DUCULTY F,et al. 2D image based road pavement crack detection by calculating minimal paths and dynamic programming[C]//Proceedings of 2014 IEEE International Conference on Image Processing. Paris:IEEE, 2015:783-787. [38] AMHAZ R, CHAMBON S, IDIER J, et al. A new minimal path selection algorithm for automatic crack detection on pavement images[C]//Proceedings of 2014 IEEE International Conference on Image Processing. Paris:IEEE, 2014:788-792. [39] AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on two-dimensional pavement images:an algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10):2718-2729. [40] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 2018 European Conference on Computer Vision. Cham:Springer, 2018, 801-818. [41] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE, 2016:770-778. [42] ZOU Q, CAO Y, LI Q, et al. CrackTree:automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3):227-238. [43] AYENU-PRAH A, ATTOH-OKINE N. Evaluating pavement cracks with bidimensional empirical mode decomposition[J]. EURASIP Journal on Advances in Signal Processing, 2008, 861701:1-7. [44] CHAMBON S. Detection of points of interest for geodesic contours-application on road images for crack detection[C]//Proceedings of 2011 International Conference on Computer Vision Theory and Applications.Vilamoura:IEEE,2011. [45] CORD A, CHAMBON S. Automatic road defect detection by textural pattern recognition based on AdaBoost[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(4):244-259. [46] OLIVEIRA H, CORREIA P L. CrackIT-an image processing toolbox for crack detection and characterization[C]//Proceedings of 2014 IEEE International Conference on Image Processing.Paris:IEEE, 2014:798-802. [47] SHI Yong, CUI Limeng, QI Zhiquan, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12):3434-3445. [48] OLIVEIRA H, CORREIA P L. Supervised strategies for cracks detection in images of road pavement flexible surfaces[C]//Proceedings of 16th European Signal Processing Conference. Lausanne:IEEE, 2015:1-5. [49] NGUYEN T S, AVILA M, BEGOT S. Automatic detection and classification of defect on road pavement using anisotropy measure[C]//Proceedings of the 17th European Signal Processing Conference.Glasgow:IEEE, 2015:617-621. [50] ZHANG Lei, YANG Fan, DANIEL ZHANG Y, et al. Road crack detection using deep convolutional neural network[C]//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix:IEEE,2016:3708-3712. [51] YANG Fan, ZHANG Lei, YU Sijia, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4):1525-1535. [52] ZOU Qin, ZHANG Zheng, LI Qingquan, et al. DeepCrack:learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2019, 28(3):1498-1512. [53] EISENBACH M, STRICKER R, SEICHTER D, et al. How to get pavement distress detection ready for deep learning? A systematic approach[C]//Proceedings of 2017 International Joint Conference on Neural Networks.Anchorage:IEEE, 2017:2039-2047. [54] STRICKER R, EISENBACH M, SESSELMANN M, et al. Improving visual road condition assessment by extensive experiments on the extended GAPs dataset[C]//Proceedings of 2019 International Joint Conference on Neural Networks. Budapest:IEEE, 2019:1-8. [55] MANDAL V, UONG L, ADU-GYAMFI Y. Automated road crack detection using deep convolutional neural networks[C]//Proceedings of 2018 IEEE International Conference on Big Data. Seattle:IEEE, 2018:5212-5215. [56] CHEN Fuchen, JAHANSHAHI M R. NB-CNN:deep learning-based crack detection using convolutional neural network and NaïveBayes data fusion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5):4392-4400. [57] FAN Zhun, LI Chong, CHEN Ying, et al. Automatic crack detection on road pavements using encoder-decoder architecture[J]. Materials, 2020, 13(13):2960. [58] KANG D H, CHA Y J. Efficient attention-based deep encoder and decoder for automatic crack segmentation[J]. Structural Health Monitoring, 2022, 21(5):2190-2205. |
[1] | JIANG Baode, HANG Wei, XU Shaofen, WU Yong. Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1504-1514. |
[2] | CAO Xingwen, ZHENG Hongwei, LIU Ying, WU Mengquan, WANG Lingyue, BAO Anming, CHEN Xi. Multi-pedestrian trajectory prediction method based on multi-view 3D simulation video learning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1595-1608. |
[3] | DU Peijun, ZHANG Wei, ZHANG Peng, LIN Cong, GUO Shanchuan, HU Zezhou. A capsule network for hyperspectral image classification employing spatial-spectral feature [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1090-1104. |
[4] | YU Xuchu, LIU Bing, XUE Zhixiang. Potential analysis and prospect of hyperspectral ground object recognition [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1115-1125. |
[5] | HANG Renlong, LI Chengxiang, LIU Qingshan. Inter-spectral contrast learning based unsupervised feature extraction for hyperspectral images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1164-1174. |
[6] | HU Xin, WANG Xinyu, ZHONG Yanfei. Adaptive context aggregation network for H2 remote sensing imagery classification [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1175-1186. |
[7] | ZHANG Mengmeng, LI Wei, LIU Huan, ZHAO Xudong, TAO Ran. Classification of hyperspectral forest tree species based on morphological transform and spatial logical integration [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1202-1211. |
[8] | SONG Shangzhen, YANG Yixin, WANG Huifeng, WANG Xiaoyan, RONG Shenghui, ZHOU Huixin. Hyperspectral anomaly detection combining sparse constraint and feature extraction via stacked autoencoder [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 932-943. |
[9] | DENG Min, LUO Bin, TANG Jianbo, YAO Zhipeng, LIU Guoping, WEN Xiang, HU Runbo, CHAI Hua, HU Wenke. Extracting road intersections from vehicle trajectory data in the face of trace density disparity [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 1000-1009. |
[10] | MA Mengkai, DONG Jian, TANG Lulu, PENG Rencan, ZHOU Yinfei, WANG Fang. Automatic extraction method of depth annotation in grid chart considering correct classification and accurate positioning of elements [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 1022-1036. |
[11] | LIU Shuai, LI Xiaoying, YU Meng, XING Guanglong. Dual decoupling semantic segmentation model for high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 638-647. |
[12] | ZHANG Yongxian, MA Guorui, CUI Zhixiang, ZHANG Zhijun. Learning feature matching for UAV image sequences with significantly different viewpoints [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 230-243. |
[13] | BU Lijing, WU Wenyu, ZHANG Zhengpeng, YANG Yin. A priori guided method for improving the quality of Luojia01-1 NTL image with multiple degradation features [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 244-259. |
[14] | SUN Genyun, WANG Xin, AN Na, ZHANG Aizhu. A method for large-scale and high-resolution impervious surface extraction based on multi-source remote sensing and deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 272-282. |
[15] | YU Wenhao, WEI Cheng, CHEN Jiaxin. Predicting the unbalanced labels of POIs on digital maps using hierarchical model [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(2): 318-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||