Acta Geodaetica et Cartographica Sinica ›› 2023, Vol. 52 ›› Issue (11): 1917-1928.doi: 10.11947/j.AGCS.2023.20220490
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
ZHAO Xuhui1, XIE Mengjie1, YANG Biao2, YANG Gang3, GAO Zhi1
Received:2022-08-09
Revised:2023-04-30
Published:2023-12-15
Supported by:CLC Number:
ZHAO Xuhui, XIE Mengjie, YANG Biao, YANG Gang, GAO Zhi. A method for crack detection and sample generation based on low rank representation and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1917-1928.
| [1] 李清泉, 张德津, 汪驰升, 等. 动态精密工程测量技术及应用[J]. 测绘学报, 2021, 50(9):1147-1158. DOI:10.11947/j.AGCS.2021.20210172. LI Qingquan, ZHANG Dejin, WANG Chisheng, et al. Technology and applications of dynamic and precise engineering surveying[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1147-1158. DOI:10.11947/j.AGCS.2021.20210172. [2] 姚连璧, 秦长才, 张邵华, 等. 车载激光点云的道路标线提取及语义关联[J]. 测绘学报, 2020, 49(4):480-488. DOI:10.11947/j.AGCS.2020.20190241. YAO Lianbi, QIN Changcai, ZHANG Shaohua, et al. Road marking extraction and semantic correlation based on vehicle-borne laser point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):480-488. DOI:10.11947/j.AGCS.2020.20190241. [3] 续东, 柳景斌, 花向红, 等. 道路空间特征与测量距离相结合的LiDAR道路边界点提取算法[J]. 测绘学报, 2021, 50(11):1534-1545. DOI:10.11947/j.AGCS.2021.20210244. XU Dong, LIU Jingbin, HUA Xianghong, et al. A road curb points extraction algorithm combined spatial features and measuring distance[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11):1534-1545. DOI:10.11947/j.AGCS.2021.20210244. [4] CHEN Chen, LI Zhilin, LI Songnian, et al. From digitalized to intelligentized surveying and mapping:fundamental is-sues and research agenda[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):148-160. [5] 李德仁, 洪勇, 王密, 等. 测绘遥感能为智能驾驶做什么?[J]. 测绘学报, 2021, 50(11):1421-1431. DOI:10.11947/j.AGCS.2021.20210280. LI Deren, HONG Yong, WANG Mi, et al. What can surveying and remote sensing do for intelligent driving?[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11):1421-1431. DOI:10.11947/j.AGCS.2021.20210280. [6] 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019, 48(8):939-953. DOI:10.11947/j.AGCS.2019.20190125. LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):939-953. DOI:10.11947/j.AGCS.2019.20190125. [7] YU Y, LI J, GUAN H, et al. 3D crack skeleton extraction from mobile LiDAR point clouds[C]//Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City:IEEE, 2014:914-917. [8] YU Yongtao, GUAN Haiyan, JI Zheng. Automated detection of urban road manhole covers using mobile laser scanning data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6):3258-3269. [9] 成斌, 管海燕, 季秋菊, 等. 车载LiDAR数据的道路裂缝信息自动提取[J]. 测绘科学, 2018, 43(8):130-134, 140. CHENG Bin, GUAN Haiyan, JI Qiuju, et al. Automatic extraction of pavement cracks information using mobile LiDAR data[J]. Science of Surveying and Mapping, 2018, 43(8):130-134, 140. [10] 朱春省. 基于结构光的路面裂缝检测关键技术研究[D]. 南京:南京航空航天大学,2017. ZHU Chunxing. Research on key technologies of pavement crack detection based on structured light[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017. [11] LAURENT J, TALBOT M, DOUCET M. Road surface inspection using laser scanners adapted for the high precision 3D measurements of large flat surfaces[C]//Proceedings of 1997 International Conference on Recent Advances in 3-D Digital Imaging and Modeling.Ottawa:IEEE, 2002:303-310. [12] LAURENT J, LEFEBVRE D, SAMSON E. Development of a new 3D transverse laser profiling system for the automatic measurement of road cracks[C]//Proceedings of 2008 Symposium on Pavement Surface Characteristics.Portoroz:[s.n.],2008. [13] MONTI M. Large-area laser scanner with holographic detector optics for real-time recognition of cracks in road surfaces[J]. Optical Engineering, 1995, 34(7):2017-2023. [14] WANG K C P, GONG W. Automated pavement distress survey:a review and a new direction[C]//Proceedings of 2002 Pavement Evaluation Conference.[S.l.]:IEEE,2002,21-25. [15] HOU Zhiqiong, WANG K C P, GONG Weiguo. Experimentation of 3D pavement imaging through stereovision[C]//Proceedings of 2007 International Conference on Transportation Engineering. Chengdu:[s.n.],2007. [16] WANG K C P,GONG W. Automated real-time pavement crack detection and classification[R].Fayetteville:University of Arkansas, 2007. [17] NEJAD F M, ZAKERI H. An optimum feature extraction method based on wavelet-radon transform and dynamic neural network for pavement distress classification[J]. Expert Systems With Applications, 2011, 38(8):9442-9460. [18] QUINTANA M, TORRES J, MENÉNDEZ J M. A simplified computer vision system for road surface inspection and maintenance[J].IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3):608-619. [19] 黄建平. 基于二维图像和深度信息的路面裂缝检测关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2013. HUANG Jianping. Research on key technologies of pavement crack detectionbased on 2D image and depth information[D]. Harbin:Harbin Institute of Technology,2013. [20] ACOSTA J A,FIGUEROA J L, MULLEN R L. Low-cost video image processing system for evaluating pavement surface distress[J].Transportation Research Record,1992,1348:63-72. [21] LI Qingquan, LIU Xianglong. Novel approach to pavement image segmentation based on neighboring difference histogram method[C]//Proceedings of 2008 Congress on Image and Signal Processing.Sanya:IEEE, 2008:792-796. [22] OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]//Proceedings of the 17th European Signal Processing Conference. Glasgow:IEEE,2015:622-626. [23] KASEKO M, RITCHIE S. A neural network-based methodology for pavement crack detection and classification[J].Transportation Research Part C:Emerging Technologies, 1993, 1(4):275-291. [24] LI Peng, WANG Chao, LI Shuangmiao, et al. Research on crack detection method of airport runway based on twice-threshold segmentation[C]//Proceedings of the 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC).Qinhuangdao:IEEE, 2016:1716-1720. [25] CHENG H D, CHEN J R, GLAZIER C, et al. Novel approach to pavement cracking detection based on fuzzy set theory[J]. Journal of Computing in Civil Engineering, 1999, 13(4):270-280. [26] TOMIKAWA T. A study of road crack detection by the meta-genetic algorithm[C]//Proceedings of 1999 IEEE Africon Conference in Africa.Cape Town:IEEE, 2002:543-548. [27] TANG Jinshan, GU Yanliang. Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis[C]//Proceedings of 2013 IEEE International Conference on Systems, Man, and Cybernetics.Manchester:IEEE, 2014:3026-3030. [28] YAN Maode, BO Shaobo, XU Kun, et al. Pavement crack detection and analysis for high-grade highway[C]//Proceedings of the 8th International Conference on Electronic Measurement and Instruments.Xi'an:IEEE, 2007:4-548. [29] SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]//Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems. Hague:IEEE, 2014:2039-2044. [30] MEDINA R, LLAMAS J, ZALAMA E, et al. Enhanced automatic detection of road surface cracks by combining 2D/3D image processing techniques[C]//Proceedings of 2014 IEEE International Conference on Image Processing.Paris:IEEE, 2015:778-782. [31] KAPELA R, ŚNIATAŁA P, TURKOT A, et al. Asphalt surfaced pavement cracks detection based on histograms of oriented gradients[C]//Proceedings of the 22nd International Conference Mixed Design of Integrated Circuits & Systems.Torun:IEEE, 2015:579-584. [32] ZHOU Jian, HUANG P S, CHIANG Fupen. Wavelet-based pavement distress detection and evaluation[J]. Optical Engineering, 2006, 45(2):027007. [33] SUBIRATS P, DUMOULIN J, LEGEAY V, et al. Automation of pavement surface crack detection using the continuous wavelet transform[C]//Proceedings of 2006 International Conference on Image Processing.Atlanta:IEEE, 2007:3037-3040. [34] SONG K Y, PETROU M, KITTLER J. Texture crack detection[J].Machine Vision and Applications, 1995, 8(1):63-75. [35] CHANDA S, BU Guoping, GUAN Hong, et al. Automatic bridge crack detection-a texture analysis-based approach[C]//Proceedings of 2014 IAPR Workshop on Artificial Neural Networks in Pattern Recognition.Berlin:Springer, 2014, 193-203. [36] XU Wei, TANG Zhenmin, ZHOU Jun, et al. Pavement crack detection based on saliency and statistical features[C]//Proceedings of 2013 IEEE International Conference on Image Processing. Melbourne:IEEE, 2014:4093-4097. [37] AVILA M, BEGOT S, DUCULTY F,et al. 2D image based road pavement crack detection by calculating minimal paths and dynamic programming[C]//Proceedings of 2014 IEEE International Conference on Image Processing. Paris:IEEE, 2015:783-787. [38] AMHAZ R, CHAMBON S, IDIER J, et al. A new minimal path selection algorithm for automatic crack detection on pavement images[C]//Proceedings of 2014 IEEE International Conference on Image Processing. Paris:IEEE, 2014:788-792. [39] AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on two-dimensional pavement images:an algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10):2718-2729. [40] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 2018 European Conference on Computer Vision. Cham:Springer, 2018, 801-818. [41] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE, 2016:770-778. [42] ZOU Q, CAO Y, LI Q, et al. CrackTree:automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3):227-238. [43] AYENU-PRAH A, ATTOH-OKINE N. Evaluating pavement cracks with bidimensional empirical mode decomposition[J]. EURASIP Journal on Advances in Signal Processing, 2008, 861701:1-7. [44] CHAMBON S. Detection of points of interest for geodesic contours-application on road images for crack detection[C]//Proceedings of 2011 International Conference on Computer Vision Theory and Applications.Vilamoura:IEEE,2011. [45] CORD A, CHAMBON S. Automatic road defect detection by textural pattern recognition based on AdaBoost[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(4):244-259. [46] OLIVEIRA H, CORREIA P L. CrackIT-an image processing toolbox for crack detection and characterization[C]//Proceedings of 2014 IEEE International Conference on Image Processing.Paris:IEEE, 2014:798-802. [47] SHI Yong, CUI Limeng, QI Zhiquan, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12):3434-3445. [48] OLIVEIRA H, CORREIA P L. Supervised strategies for cracks detection in images of road pavement flexible surfaces[C]//Proceedings of 16th European Signal Processing Conference. Lausanne:IEEE, 2015:1-5. [49] NGUYEN T S, AVILA M, BEGOT S. Automatic detection and classification of defect on road pavement using anisotropy measure[C]//Proceedings of the 17th European Signal Processing Conference.Glasgow:IEEE, 2015:617-621. [50] ZHANG Lei, YANG Fan, DANIEL ZHANG Y, et al. Road crack detection using deep convolutional neural network[C]//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix:IEEE,2016:3708-3712. [51] YANG Fan, ZHANG Lei, YU Sijia, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4):1525-1535. [52] ZOU Qin, ZHANG Zheng, LI Qingquan, et al. DeepCrack:learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2019, 28(3):1498-1512. [53] EISENBACH M, STRICKER R, SEICHTER D, et al. How to get pavement distress detection ready for deep learning? A systematic approach[C]//Proceedings of 2017 International Joint Conference on Neural Networks.Anchorage:IEEE, 2017:2039-2047. [54] STRICKER R, EISENBACH M, SESSELMANN M, et al. Improving visual road condition assessment by extensive experiments on the extended GAPs dataset[C]//Proceedings of 2019 International Joint Conference on Neural Networks. Budapest:IEEE, 2019:1-8. [55] MANDAL V, UONG L, ADU-GYAMFI Y. Automated road crack detection using deep convolutional neural networks[C]//Proceedings of 2018 IEEE International Conference on Big Data. Seattle:IEEE, 2018:5212-5215. [56] CHEN Fuchen, JAHANSHAHI M R. NB-CNN:deep learning-based crack detection using convolutional neural network and NaïveBayes data fusion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5):4392-4400. [57] FAN Zhun, LI Chong, CHEN Ying, et al. Automatic crack detection on road pavements using encoder-decoder architecture[J]. Materials, 2020, 13(13):2960. [58] KANG D H, CHA Y J. Efficient attention-based deep encoder and decoder for automatic crack segmentation[J]. Structural Health Monitoring, 2022, 21(5):2190-2205. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Jixian ZHANG, Haiyan GU, Huan NI, Haitao LI, Yi YANG, Shaopeng DING, Songman SUI. Deep learning methods for remote sensing intelligent change detection: evolution and development [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1347-1370. |
| [3] | Shuai FANG, Jiaen LIU, Jing ZHANG. Spatio-temporal fusion algorithm based on adaptive reference feature incorporation and multi-scale feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1476-1488. |
| [4] | Nina MENG, Fengmei LI, Xiaodong ZHOU. Data and cognition dual-driven building group generalization results and scale consistency assessment [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1318-1331. |
| [5] | Yaqing WANG, Zhonghui WANG. River network automated selection method based on heterogeneous graph convolutional networks [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1332-1345. |
| [6] | Xiaoya AN, Weiru GUO, Pengxin ZHANG, Xinxin LI, Lei SHI. Ship trajectories clustering method considering similarity in geometric position and mobility features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1107-1121. |
| [7] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [8] | Qingli LUO, Xueyan LI, Guoman HUANG, Honghui CHEN, Minglong XUE, Jian LI. AOSN: alpha optimal structure network for height estimation from a single SAR image in mountain areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 888-898. |
| [9] | Wei TU, Xiangyuan CHI, Tianhong ZHAO, Jian YANG, Shiping ZHU, Deli CHEN. Multi-view spatio-temporal graph convolutional networks model for urban drainage networks flow prediction [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 334-344. |
| [10] | Zhili ZHANG, Huiwei JIANG, Xiangyun HU. A minimal-interaction framework for accurate and batch extraction of geospatial objects from remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1863-1876. |
| [11] | Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103. |
| [12] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
| [13] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [14] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
| [15] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||