[1] APPICE A, GUCCIONE P, ACCIARO E, et al. Detecting salient regions in a bi-temporal hyperspectral scene by iterating clustering and classification[J]. Applied Intelligence, 2020, 50(10):3179-3200. [2] MAKANTASIS K, DOULAMIS A D, DOULAMIS N D, et al. Tensor-based classification models for hyperspectral data analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12):6884-6898. [3] SUN Le, WU Feiyang, HE Chengxu, et al. Weighted collaborative sparse and L1/2 low-rank regularizations with superpixel segmentation for hyperspectral unmixing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:5500405. [4] RESHM S, VENI S. Comparative analysis of classification techniques for crop classification using airborne hyperspectral data[C]//Proceedings of 2017 International Conference on Wireless Communications, Signal Processing and Networking. Chennai:IEEE, 2018:2272-2276. [5] CABALLERO B, CALVINI R, AMIGO J M. Hyperspectral imaging in crop fields:precision agriculture[M]//Data Handling in Science and Technology. Amsterdam:Elsevier, 2019:453-473. [6] WEI Lifei, YU Mingxuan, LIANG Yajing, et al. Precise crop classification using spectral-spatial-location fusion based on conditional random fields for UAV-borne hyperspectral remote sensing imagery[J]. Remote Sensing, 2019, 11(17):2011. [7] MEI Shaohui, HOU Junhui, CHEN Jie, et al. Simultaneous spatial and spectral low-rank representation of hyperspectral images for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5):2872-2886. [8] DENG Cheng, CHEN Zhaojia, LIU Xianglong, et al. Triplet-based deep hashing network for cross-modal retrieval[J]. IEEE Transactions on Image Processing, 2018, 27(8):3893-3903. [9] 杨国鹏,余旭初,冯伍法,等.高光谱遥感技术的发展与应用现状[J].测绘通报, 2008(10):1-4. YANG Guopeng, YU Xuchu, FENG Wufa, et al. The development and application of hyperspectral RS technology[J]. Bulletin of Surveying and Mapping, 2008(10):1-4. [10] HONG Danfeng, GAO Lianru, YAO Jing, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5966-5978. [11] WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geoinformation Science, 2021, 4(4):46-62. [12] XUE Zhaohui, NIE Xiangyu. Low-rank and sparse representation with adaptive neighborhood regularization for hyperspectral image classification[J]. Journal of Geoinformation Science, 2022, 5(1):73-90. [13] ZHANG Hongyan, ZHAI Han, ZHANG Liangpei, et al. Spectral-spatial sparse subspace clustering for hyperspectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3672-3684. [14] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press, 1981. [15] HARTIGAN A, WONG A. A K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1):100-108. [16] CHEN Songcan, ZHANG Daoqiang. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(4):1907-1916. [17] KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5):1328-1337. [18] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4):395-416. [19] WANG Rong, NIE Feiping, YU Weizhong. Fast spectral clustering with anchor graph for large hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11):2003-2007. [20] WANG Rong, NIE Feiping, WANG Zhen, et al. Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10):7352-7364. [21] 李康,徐金东,赵甜雨,等.一种面向高光谱图像分类的模糊谱聚类算法[J].中国科技论文, 2021, 16(7):743-747. LI Kang, XU Jindong, ZHAO Tianyu, et al. A fuzzy spectral clustering algorithm for hyperspectral image classification[J]. China Sciencepaper, 2021, 16(7):743-747. [22] 许裕雄,杨晓君,蔡湧达,等.基于二叉树锚点的高光谱快速聚类算法[J].激光与光电子学进展, 2021, 58(2):0210021. XU Yuxiong, YANG Xiaojun, CAI Yongda, et al. Hyperspectral fast clustering algorithm based on binary tree anchor point[J]. Laser&Optoelectronics Progress, 2021, 58(2):0210021. [23] CAI Deng, CHEN Xinlei. Large scale spectral clustering via landmark-based sparse representation[J]. IEEE Transactions on Cybernetics, 2015, 45(8):1669-1680. [24] YANG Xiaojun, XU Yuxiong, LI Siyuan, et al. Fuzzy embedded clustering based on bipartite graph for large-scale hyperspectral image[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:5505605. [25] 聂飞平,王成龙,王榕.基于二部图的快速聚类算法[J].深圳大学学报(理工版), 2019, 36(1):18-23. NIE Feiping, WANG Chenglong, WANG Rong. Fast clustering based on bipartite graph[J]. Journal of Shenzhen University (Science&Engineering), 2019, 36(1):18-23. [26] BANERJEE A, MERUGU S, DHILLON I, et al. Clustering with Bregman divergences[C]//Proceedings of 2004 SIAM International Conference on Data Mining. Philadelphia:Society for Industrial and Applied Mathematics, 2004:234-245. [27] HASNAT M A, ALATA O, TRÉMEAU A. Model-based hierarchical clustering with Bregman divergences and fishers mixture model:application to depth image analysis[J]. Statistics and Computing, 2016, 26(4):861-880. [28] WU Chengmao, ZHANG Xue. A novel kernelized total Bregman divergence-based fuzzy clustering with local information for image segmentation[J]. International Journal of Approximate Reasoning, 2021, 136:281-305. [29] LIU Meizhu, VEMURI B C, AMARI S I, et al. Total Bregman divergence and its applications to shape retrieval[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco:IEEE, 2010:3463-3468. [30] NIELSEN F, NOCK R. Total Jensen divergences:definition, properties and k-means++clustering[EB/OL].[2022-11-17]. https://arxiv.org/pdf/1309.7109.pdf. [31] WU Chengmao, ZHANG Xue. Total Bregman divergence-based fuzzy local information C-means clustering for robust image segmentation[J]. Applied Soft Computing, 2020, 94:106468. [32] LI Yeqing, NIE Feiping, HUANG Heng, et al. Large-scale multi-view spectral clustering via bipartite graph[C]//Proceedings of 2015 AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2015:2750-2756. [33] LIU W, HE J F, CHANG S F. Large graph construction for scalable semi-supervised learning[EB/OL].[2022-11-17]. https://icml.cc/Conferences/2010/papers/16.pdf. [34] CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning:challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756. [35] ZHENG Xiaoxiong, CHEN Tao. High spatial resolution remote sensing image segmentation based on the multiclassification model and the binary classification model[J]. Neural Computing and Applications, 2023, 35(5):3597-3604 |