Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (5): 917-932.doi: 10.11947/j.AGCS.2024.20230009
• Geodesy and Navigation • Previous Articles Next Articles
Wei YUAN1(), Xiaolei JI1, Dongpo WANG2, Kaige GUAN1, Zihao PEI1, Huiya ZHONG3, Jia TANG3, Ruifeng SUN4(), Wei WANG1, Hemin ZHENG5, Shuaijie GUO5, Hongxu LI5
Received:
2023-01-31
Revised:
2024-05-06
Published:
2024-06-19
Contact:
Ruifeng SUN
E-mail:yuanweisuper001@126.com;18608663360@zt17.cn
About author:
YUAN Wei (1986—), male, PhD, associate professor, majors in safety prevention and control of geological disaster. E-mail: yuanweisuper001@126.com
Supported by:
CLC Number:
Wei YUAN, Xiaolei JI, Dongpo WANG, Kaige GUAN, Zihao PEI, Huiya ZHONG, Jia TANG, Ruifeng SUN, Wei WANG, Hemin ZHENG, Shuaijie GUO, Hongxu LI. Landslide displacement weighted inverse analysis and monitoring and warning method under the combined action of rainfall and reservoir water level[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(5): 917-932.
Tab. 3
Orthogonal test scheme"
试验序号 | ①含碎、块石粉质黏土 | ②块、碎石夹粉质黏土 | ③滑带 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E1/MPa | μ1 | c1/kPa | φ1/(°) | E2/MPa | μ2 | c2/kPa | φ2/(°) | E3/MPa | μ3 | c3/kPa | φ3/(°) | |
1 | 100 | 0.35 | 17 | 22 | 500 | 0.25 | 140 | 25 | 100 | 0.35 | 20 | 18 |
2 | 100 | 0.35 | 17 | 22 | 1250 | 0.3 | 170 | 30 | 150 | 0.4 | 30 | 23 |
3 | 100 | 0.35 | 17 | 22 | 2000 | 0.35 | 200 | 35 | 200 | 0.45 | 40 | 28 |
4 | 100 | 0.4 | 27 | 26 | 500 | 0.25 | 140 | 30 | 150 | 0.4 | 40 | 28 |
5 | 100 | 0.4 | 27 | 26 | 1250 | 0.3 | 170 | 35 | 200 | 0.45 | 20 | 18 |
6 | 100 | 0.4 | 27 | 26 | 2000 | 0.35 | 200 | 25 | 100 | 0.35 | 30 | 23 |
7 | 100 | 0.45 | 37 | 30 | 500 | 0.25 | 140 | 35 | 200 | 0.45 | 30 | 23 |
8 | 100 | 0.45 | 37 | 30 | 1250 | 0.3 | 170 | 25 | 100 | 0.35 | 40 | 28 |
9 | 100 | 0.45 | 37 | 30 | 2000 | 0.35 | 200 | 30 | 150 | 0.4 | 20 | 18 |
10 | 150 | 0.35 | 27 | 30 | 500 | 0.3 | 200 | 25 | 150 | 0.45 | 20 | 23 |
11 | 150 | 0.35 | 27 | 30 | 1250 | 0.35 | 140 | 30 | 200 | 0.35 | 30 | 28 |
12 | 150 | 0.35 | 27 | 30 | 2000 | 0.25 | 170 | 35 | 100 | 0.4 | 40 | 18 |
13 | 150 | 0.4 | 37 | 22 | 500 | 0.3 | 200 | 30 | 200 | 0.35 | 40 | 18 |
14 | 150 | 0.4 | 37 | 22 | 1250 | 0.35 | 140 | 35 | 100 | 0.4 | 20 | 23 |
15 | 150 | 0.4 | 37 | 22 | 2000 | 0.25 | 170 | 25 | 150 | 0.45 | 30 | 28 |
16 | 150 | 0.45 | 17 | 26 | 500 | 0.3 | 200 | 35 | 100 | 0.4 | 30 | 28 |
17 | 150 | 0.45 | 17 | 26 | 1250 | 0.35 | 140 | 25 | 150 | 0.45 | 40 | 18 |
18 | 150 | 0.45 | 17 | 26 | 2000 | 0.25 | 170 | 30 | 200 | 0.35 | 20 | 23 |
19 | 200 | 0.35 | 37 | 26 | 500 | 0.35 | 170 | 25 | 200 | 0.4 | 20 | 28 |
20 | 200 | 0.35 | 37 | 26 | 1250 | 0.25 | 200 | 30 | 100 | 0.45 | 30 | 18 |
21 | 200 | 0.35 | 37 | 26 | 2000 | 0.3 | 140 | 35 | 150 | 0.35 | 40 | 23 |
22 | 200 | 0.4 | 17 | 30 | 500 | 0.35 | 170 | 30 | 100 | 0.45 | 40 | 23 |
23 | 200 | 0.4 | 17 | 30 | 1250 | 0.25 | 200 | 35 | 150 | 0.35 | 20 | 28 |
24 | 200 | 0.4 | 17 | 30 | 2000 | 0.3 | 140 | 25 | 200 | 0.4 | 30 | 18 |
25 | 200 | 0.45 | 27 | 22 | 500 | 0.35 | 170 | 35 | 150 | 0.35 | 30 | 18 |
26 | 200 | 0.45 | 27 | 22 | 1250 | 0.25 | 200 | 25 | 200 | 0.4 | 40 | 23 |
27 | 200 | 0.45 | 27 | 22 | 2000 | 0.3 | 140 | 30 | 100 | 0.45 | 20 | 28 |
Tab. 4
The fitting function between the calculated deformation value of monitoring point and mechanical parameters"
监测点 | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DLXG01 | 2 019.6 | -0.194 8 | -401.62 | -1.510 6 | -1.418 8 | -0.077 5 | -541.82 | -1.281 1 | -0.853 7 | -1.204 6 | -559.77 | -3.933 1 | -24.442 2 |
DLXG02 | 7 586.4 | -1.813 9 | -1 885.22 | -10.932 8 | -30.302 5 | -0.187 1 | -1 939.12 | -4.713 8 | -26.814 7 | -2.870 4 | -2 029.77 | -13.738 6 | -47.836 7 |
DLXG03 | 9 514.8 | -2.281 5 | -2 367.13 | -13.918 8 | -38.269 9 | -0.233 3 | -2 437.83 | -5.893 3 | -32.837 1 | -3.655 1 | -2 528.73 | -17.580 0 | -60.511 1 |
DLXG05 | 8 261.4 | -1.989 9 | -2 069.1 | -12.325 5 | -33.319 4 | -0.205 9 | -2 155.72 | -5.144 0 | -29.378 2 | -3.031 3 | -2 244.82 | -15.010 3 | -50.143 5 |
DLXG06 | 8 927.8 | -2.139 3 | -2 241.06 | -13.469 9 | -35.840 9 | -0.217 8 | -2 347.48 | -5.591 5 | -30.998 8 | -3.315 5 | -2 406.88 | -16.452 8 | -54.882 6 |
DLXG07 | 4 309.1 | -1.062 3 | -1 266.25 | -5.362 9 | -12.527 7 | -0.094 5 | -1 092.71 | -3.669 8 | -10.072 0 | -1.467 75 | -1 092.81 | -12.242 0 | -27.199 2 |
DLXG08 | 6 290.6 | -1.382 9 | -1 513.15 | -8.821 6 | -23.070 6 | -0.174 3 | -1 641.20 | -3.917 3 | -20.549 0 | -2.502 8 | -1 638.84 | -11.124 5 | -42.810 0 |
DLXG09 | 1 324.09 | -0.156 9 | -318.097 | -1.137 7 | -0.675 9 | -0.048 2 | -335.70 | -0.903 3 | 0.037 2 | -0.770 5 | -343.24 | -3.225 2 | -15.781 1 |
DLXG011 | 6 291.9 | -1.403 85 | -1 498.87 | -8.531 2 | -22.804 9 | -0.183 7 | -1617 | -3.784 2 | -20.238 7 | -2.546 2 | -1 695.75 | -11.169 9 | -43.155 |
DLXG012 | 3 930.7 | -0.697 8 | -798.04 | -4.254 5 | -10.730 5 | -0.156 0 | -976.79 | -2.227 4 | -9.566 5 | -1.895 1 | -1 004.48 | -6.772 0 | -34.162 4 |
DLXG013 | 3 407.6 | -0.568 1 | -638.04 | -3.302 4 | -8.131 1 | -0.143 | -842.06 | -1.896 4 | -7.275 4 | -1.750 2 | -854.50 | -5.826 7 | -32.249 9 |
DLXG014 | 2 781.2 | -0.397 4 | -519.16 | -2.533 8 | -5.400 3 | -0.108 5 | -720.80 | -1.545 7 | -3.846 5 | -1.532 8 | -748.29 | -5.198 1 | -29.370 0 |
[1] | SUN Guanhua, ZHENG Hong, HUANG Yaoying, et al. Parameter inversion and deformation mechanism of Sanmendong landslide in the Three Gorges Reservoir region under the combined effect of reservoir water level fluctuation and rainfall[J]. Engineering Geology, 2016, 205: 133-145. |
[2] | 肖捷夫. 库水涨落和降雨条件下藕塘滑坡变形演化机制及其预测模型研究[D]. 武汉: 中国地质大学, 2021. |
XIAO Jiefu. Deformation evolution mechanism and displacement prediction model of Outang landslide under water level fluctuation and rainfall[D]. Wuhan: China University of Geosciences, 2021. | |
[3] | CHEN Yihui, LI Zhenhong, BAI L, et al. Successful applications of generic atmospheric correction online service for InSAR (GACOS) to the reduction of atmospheric effects on InSAR observations[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 109-115. |
[4] | 叶润青, 付小林, 郭飞, 等. 三峡水库运行期地质灾害变形特征及机制分析[J]. 工程地质学报, 2021, 29(3): 680-692. |
YE Runqing, FU Xiaolin, GUO Fei, et al. Deformation characteristics and mechanism analysis of geological hazards during operation period of Three Gorges Reservoir[J]. Journal of Engineering Geology, 2021, 29(3): 680-692. | |
[5] | 许强, 朱星, 李为乐, 等. “天-空-地” 协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436.DOI: 10.11947/j.AGCS.2022.20220320. |
XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436.DOI: 10.11947/j.AGCS.2022.20220320. | |
[6] | 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374. |
XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374. | |
[7] | LI Zhenhong, YU Chen, XIAO Ruya, et al. Entering a new era of InSAR: advanced techniques and emerging applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 1-4. |
[8] | 罗文强, 李飞翱, 刘小珊, 等. 多元时间序列分析的滑坡演化阶段划分[J]. 地球科学, 2016, 41(4): 711-717. |
LUO Wenqiang, LI Feiao, LIU Xiaoshan, et al. Evolution stage division of landslide based on analysis of multivariate time series[J]. Earth Science, 2016, 41(4): 711-717. | |
[9] | 郭飞, 黄晓虎, 邓茂林, 等. 三峡库区“阶跃” 型滑坡变形机理与预警模型[J]. 测绘学报, 2022, 51(10): 2205-2215.DOI: 10.11947/j.AGCS.2022.20220296. |
GUO Fei, HUANG Xiaohu, DENG Maolin, et al. Study on deformation mechanism and warning model of step-like landslide in Three Gorges Reservoir area[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2205-2215. DOI: 10.11947/j.AGCS.2022.20220296. | |
[10] | LIU Guang, ZBIGIEW P, STEFANO S, et al. Land surface displacement geohazards monitoring using multi-temporal InSAR techniques[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 77-87. |
[11] | 凌晴, 张勤, 张静, 等. 融合工程地质资料与GNSS高精度监测信息的黑方台党川黄土滑坡稳定性研究[J]. 测绘学报, 2022, 51(10): 2226-2238.DOI: 10.11947/j.AGCS.2022.20220307. |
LING Qing, ZHANG Qin, ZHANG Jing, et al. Stability evaluation of Dangchuan loess landslide in Heifangtai based on integration of engineering geological data and GNSS high-precision monitoring information[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2226-2238. DOI: 10.11947/j.AGCS.2022.20220307. | |
[12] | 戴粤, 戴吾蛟, 余文坤. 综合地表与深部位移监测数据的滑坡多目标加权位移反分析方法[J]. 测绘学报, 2022, 51(10): 2149-2159.DOI: 10.11947/j.AGCS.2022.20210163. |
DAI Yue, DAI Wujiao, YU Wenkun. A landslide multi-objective weighted displacement back analysis method synthesizing ground and underground displacement monitoring data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2149-2159. DOI: 10.11947/j.AGCS.2022.20210163. | |
[13] | 蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 1265-1276. |
JIANG Shuihua, LIU Yuan, ZHANG Xiaobo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1265-1276. | |
[14] | 漆祖芳, 姜清辉, 周创兵, 等. 基于v-SVR和MVPSO算法的边坡位移反分析方法及其应用[J]. 岩石力学与工程学报, 2013, 32(6): 1185-1196. |
QI Zufang, JIANG Qinghui, ZHOU CHuangbing, et al. A new slope displacement back analysis method based on v-SVR and MVPSO algorithm and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1185-1196. | |
[15] | 阮永芬, 高春钦, 刘克文, 等. 基于粒子群算法优化小波支持向量机的岩土力学参数反演[J]. 岩土力学, 2019, 40(9): 3662-3669. |
RUAN Yongfen, GAO Chunqin, LIU Kewen, et al. Inversion of rock and soil mechanics parameters based on particle swarm optimization wavelet support vector machine[J]. Rock and Soil Mechanics, 2019, 40(9): 3662-3669. | |
[16] | 江巍, 欧阳晔, 闫金洲, 等. 边坡岩土体抗剪强度的逆向迭代修正反演方法[J]. 岩土力学, 2022, 43(8): 2287-2295. |
JIANG Wei, OUYANG Ye, YAN Jinzhou, et al. Inversion iterative correction method for estimating shear strength of rock and soil mass in slope engineering[J]. Rock and Soil Mechanics, 2022, 43(8): 2287-2295. | |
[17] | 季慧, 金银富, 尹振宇, 等. 遗传算法改进及其在岩土参数反分析中的应用[J]. 计算力学学报, 2018, 35(2): 224-229. |
JI Hui, JIN Yinfu, YIN Zhenyu, et al. Enhancement of genetic algorithm and its application to the identification of soil parameters by inverse analysis[J]. Chinese Journal of Computational Mechanics, 2018, 35(2): 224-229. | |
[18] | HAJIHASSANI M, JAHED ARMAGHANI D, KALATEHJARI R. Applications of particle swarm optimization in geotechnical engineering: a comprehensive review[J]. Geotechnical and Geological Engineering, 2018, 36(2): 705-722. |
[19] | 袁维, 钟辉亚, 朱屹, 等. 基于数据融合的边坡临滑状态确定方法[J]. 岩土力学, 2022, 43(S2): 575-587. |
YUAN Wei, ZHONG Huiya, ZHU Yi, et al. Determination method of slope imminentsliding state based on data fusion[J]. Rock and Soil Mechanics, 2022, 43(S2): 575-587. | |
[20] | 袁维, 孙瑞峰, 钟辉亚, 等. 阶跃型滑坡综合变形预测及监测预警方法研究[J]. 水利学报, 2023, 54(4): 461-473. |
YUAN Wei, SUN Ruifeng, ZHONG Huiya, et al. Research on comprehensive deformation prediction and monitoring and early warning method for step-like landslide[J]. Journal of Hydraulic Engineering, 2023, 54(4): 461-473. | |
[21] | ZHANG Yan, SU Guoshao, LIU Baochen, et al. A novel displacement back analysis method considering the displacement loss for underground rock mass engineering[J]. Tunnelling and Underground Space Technology, 2020, 95: 103141. |
[22] | 张洪亮, 何川, 谭玉阳, 等. 基于模拟退火法的水力压裂裂缝参数反演[J]. 北京大学学报(自然科学版), 2013, 49(4): 585-590. |
ZHANG Hongliang, HE Chuan, TAN Yuyang, et al. Simulated annealing based inversion of hydraulic fracture parameters[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(4): 585-590. | |
[23] | 袁维, 郝笑甜, 李小春, 等. 一种考虑变形参数和强度参数协调折减的强度折减法研究[J]. 岩土力学, 2016, 37(7): 2096-2100. |
YUAN Wei, HAO Xiaotian, LI Xiaochun, et al. A strength reduction method considering reduction of strength parameters coordinating with deformation parameters[J]. Rock and Soil Mechanics, 2016, 37(7): 2096-2100. | |
[24] | 中华人民共和国交通运输部. 公路滑坡防治设计规范:JTG/T 3334—2018[S]. 北京: 中国人民交通出版社, 2019. |
Ministry of Transport of the People's Republic of China. Specifications for design of highway landslide stabilization[S]. Beijing: China People's Communications Press, 2019. | |
[25] | 唐军峰, 唐雪梅, 肖鹏, 等. 库水位升降与降雨作用下大型滑坡体渗流稳定性分析[J]. 地质科技通报, 2021, 40(4): 153-161. |
TANG Junfeng, TANG Xuemei, XIAO Peng, et al. Analysis of seepage stability of large-scale landslide under water-level fluctuation and rainfall[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 153-161. |
[1] | Yating LIU, Chuanfa CHEN. Landslide susceptibility evaluation method considering spatial heterogeneity and feature selection [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1417-1428. |
[2] | Yanan JIANG, Linfeng ZHENG, Qiang XU, Minggao TANG, Xing ZHU. Step-like displacement prediction of landslides guided by deformation mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1128-1139. |
[3] | Hao XU, Qin ZHANG, Li WANG, Bao SHU, Yuan DU, Guanwen HUANG. Intelligent site selection method for UAV-dropped GNSS landslide monitoring equipment [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1140-1153. |
[4] | CHEN Shuai, MIAO Zelang, WU Lixin. Probabilistic seismic landslide hazard mapping with consideration of slope occurrence environment [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1548-1561. |
[5] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[6] | ZHANG Qin, BAI Zhengwei, HUANG Guanwen, DU Yuan, WANG Duo. Review of GNSS landslide monitoring and early warning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1985-2000. |
[7] | ZHU Jianjun, HU Jun, LI Zhiwei, SUN Qian, ZHENG Wanji. Recent progress in landslide monitoring with InSAR [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2001-2019. |
[8] | LIU Jiping, LIANG Enjie, XU Shenghua, LIU Mengmeng, WANG Yong, ZHANG Fuhao, LUO An. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2034-2045. |
[9] | WU Qiong, GE Daqing, YU Junchuan, ZHANG Ling, LI Man, LIU Bin, WANG Yan, MA Yanni, LIU Hongjuan. Deep learning identification technology of InSAR significant deformation zone of potential landslide hazard at large scale [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2046-2055. |
[10] | DAI Keren, SHEN Yue, WU Mingtang, FENG Wenkai, DONG Xiujun, ZHUO Guanchen, YI Xiaoyu. Identification of potential landslides in Baihetan Dam area before the impoundment by combining InSAR and UAV survey [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2069-2082. |
[11] | WANG Guoquan, BAO Yan. GNSS landslide monitoring aligned to regional reference frames [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2107-2116. |
[12] | WANG Duo, HUANG Guanwen, DU Yuan, BAI Zhengwei, CHEN Zi, LI Yang. Switching method of GNSS landslide monitoring reference station considering the correction of motion state [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2117-2124. |
[13] | DU Nianchun, WANG Yuming, SHEN Xiangqian, XIE Xiang. Correction method of atmospheric phase for arc-scanning synthetic aperture radar in landslide monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2139-2148. |
[14] | DAI Yue, DAI Wujiao, YU Wenkun. A landslide multi-objective weighted displacement back analysis method synthesizing ground and underground displacement monitoring data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2149-2159. |
[15] | LUO Huiyuan, JIANG Yanan, XU Qiang, LIAO Lu, YAN Aoxiang, LIU Chenwei. A spatio-temporal network for landslide displacement prediction based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2160-2170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||