Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (4): 724-735.doi: 10.11947/j.AGCS.2024.20230012
• Cartography and Geoinformation • Previous Articles Next Articles
Jinghan WANG1,2(), Tinghua AI1,2(), Hao WU1,2, Haijiang XU1,2, Guangyue LI3
Received:
2023-01-13
Revised:
2023-10-09
Published:
2024-05-13
Contact:
Tinghua AI
E-mail:jinghanwang@whu.edu.cn;tinghuaai@whu.edu.cn
About author:
WANG Jinghan (2000—), female, postgraduate, majors in spatial data mining and data analysis. E-mail: jinghanwang@whu.edu.cn
CLC Number:
Jinghan WANG, Tinghua AI, Hao WU, Haijiang XU, Guangyue LI. Spatial co-location pattern mining based on graph structure[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 724-735.
Fig. 4
"
Input: | 初始元数K=1,支持度阈值Pts,空间特征集F={f1,f2,f3,…,fm},K元候选集CK,邻接图边集Edge | ||||
Output: | 空间同位模式Co_P | ||||
G1⇐F //记录图中的所有空间特征,生成一元子图 | |||||
while GK≠∅ do // 当K元子图非空时继续 | |||||
create Ct for each item in CK+1 //建立候选项计数器 | |||||
for g in GK do //遍历邻接图中每个K元子图 | |||||
for edge in Edge do //遍历邻接图中所有边 | |||||
if |g∪edge|=fi then //如果边和子图相交于某实例点 | |||||
g′⇐prune(g∪edge) //边连接并剪枝 | |||||
CK+1⇐G′,Ct⇐Ct+1 //更新候选模式,G′为代表g′的空间模式,记录频度 | |||||
end if | |||||
end for | |||||
end for | |||||
if Sup>Pts then //判断是否频繁 | |||||
GK+1⇐CK+1,Co_P⇐Co_P+CK+1 //生成K+1元子图,更新空间同位模式 | |||||
else: | |||||
Remove edge //删除Edge中非同位模式的边 | |||||
end if | |||||
K⇐K+1 | |||||
end |
Tab. 4
The results of binary spatial co-location pattern mining"
空间同位模式 | 包含元素种类 | 包含元素数量 | 元素总数 | 支持度 | 阈值比较 |
---|---|---|---|---|---|
[中餐,西餐] | 中餐 | 258 | 782 | 0.329 92 | 0.329 92>Pts |
西餐 | 189 | 306 | 0.617 64 | ||
[中餐,便利店] | 中餐 | 212 | 782 | 0.271 10 | 0.271 10>Pts |
便利店 | 135 | 245 | 0.551 02 | ||
[中餐,停车场] | 中餐 | 162 | 782 | 0.207 16 | 0.207 16>Pts |
停车场 | 164 | 484 | 0.338 84 | ||
[中餐,加油站] | 中餐 | 109 | 782 | 0.139 39 | 0.139 39>Pts |
加油站 | 96 | 503 | 0.190 85 | ||
[西餐,购物中心] | 西餐 | 28 | 306 | 0.091 50 | 0.091 50>Pts |
购物中心 | 26 | 58 | 0.448 28 | ||
[西餐,便利店] | 西餐 | 71 | 306 | 0.232 03 | 0.232 03>Pts |
便利店 | 74 | 245 | 0.302 04 | ||
[西餐,停车场] | 西餐 | 87 | 306 | 0.284 31 | 0.196 28>Pts |
停车场 | 95 | 484 | 0.196 28 | ||
[西餐,加油站] | 西餐 | 33 | 306 | 0.107 84 | 0.059 64>Pts |
加油站 | 30 | 503 | 0.059 64 | ||
[购物中心,停车场] | 购物中心 | 22 | 58 | 0.379 31 | 0.057 85>Pts |
停车场 | 28 | 484 | 0.057 85 | ||
[便利店,停车场] | 便利店 | 61 | 245 | 0.248 98 | 0.142 56>Pts |
停车场 | 69 | 484 | 0.142 56 | ||
[便利店,加油站] | 便利店 | 47 | 245 | 0.191 84 | 0.085 49>Pts |
加油站 | 43 | 503 | 0.085 49 | ||
[停车场,加油站] | 停车场 | 82 | 484 | 0.169 42 | 0.169 42>Pts |
加油站 | 86 | 503 | 0.170 97 |
Tab. 6
The comparison of spatial co-location pattern mining results"
空间同位模式 | 支持度 | Join-less参与度 | KNN参与度 | KNFCOM参与度 |
---|---|---|---|---|
[中餐,西餐] | 0.329 923 274 | 0.260 87 | 0.162 79 | 0.325 58 |
[中餐,便利店] | 0.329 923 274 | 0.119 57 | 0.093 02 | 0.244 18 |
[中餐,停车场] | 0.207 161 125 | 0.208 84 | 0.190 47 | 0.357 14 |
[中餐,加油站] | 0.139 386 189 | 0.149 33 | 0.186 04 | 0.197 67 |
[西餐,购物中心] | 0.091 503 268 | 0.220 34 | 0.132 07 | 0.377 35 |
[西餐,便利店] | 0.232 026 144 | 0.118 64 | 0.056 60 | 0.193 54 |
[西餐,停车场] | 0.196 280 992 | 0.180 72 | 0.142 85 | 0.309 52 |
[西餐,加油站] | 0.059 642 147 | 0.116 14 | 0.104 79 | 0.203 37 |
[购物中心,停车场] | 0.057 851 240 | 0.052 21 | 0.039 68 | 0.087 30 |
[便利店,停车场] | 0.142 561 983 | 0.108 43 | 0.111 11 | 0.261 90 |
[便利店,加油站] | 0.085 487 078 | 0.069 06 | 0.093 75 | 0.109 37 |
[停车场,加油站] | 0.169 421 488 | 0.223 77 | 0.079 36 | 0.095 23 |
[中餐,西餐,购物中心] | pruned | 0.070 65 | 0.011 62 | 0.127 90 |
[中餐,西餐,便利店] | 0.149 616 368 | 0.042 37 | 0.011 62 | 0.116 27 |
[中餐,西餐,停车场] | 0.071 611 253 | 0.056 22 | 0.015 87 | 0.158 73 |
Tab. 7
The results of co-location mining"
模式 | 真实参与度 | Join-less参与度 | KNN参与度 | KNFCOM参与度 | 支持度 |
---|---|---|---|---|---|
[A,B] | 0.400 0 | 0.481 9 | 0.552 9 | 0.397 6 | 0.482 3 |
[A,C] | 0.409 6 | 0.487 2 | 0.564 1 | 0.325 3 | 0.589 7 |
[B,C] | 0.423 5 | 0.447 1 | 0.576 9 | 0.364 7 | 0.470 5 |
[B,E] | 0 | 0.058 8 | 0.105 8 | 0.047 1 | 0.082 3 |
[C,D] | 0 | 0.076 9 | 0.089 7 | 0.038 4 | 0.102 5 |
[D,E] | 0 | 0.200 0 | 0.263 1 | 0.133 3 | 0.052 6 |
[A,B,C] | 0.329 4 | 0.152 9 | 0.082 3 | 0.070 5 | 0.256 4 |
[1] | 马荣华, 马晓冬, 蒲英霞. 从GIS数据库中挖掘空间关联规则研究[J]. 遥感学报, 2005, 9(6):733-741. |
MA Ronghua, MA Xiaodong, PU Yingxia. Spatial association rule mining from GIS database[J]. Journal of Remote Sensing, 2005, 9(6):733-741. | |
[2] | KOPERSKI K. A progressive refinement approach to spatial data mining [D].Vancouver: Simon Fraser University, 1999. |
[3] | SIERRA R, STEPHENS C R. Exploratory analysis of the interrelations between co-located Boolean spatial features using network graphs[J]. International Journal of Geographical Information Science, 2012, 26(3):441-468. |
[4] | FLOUVAT F, NQUYEN V S, DESMIER E, et al. Domain-driven co-location mining extraction, visualization and integration in a GIS[J]. Geoinformatica An International Journal of Advances of Computer Science for Geographic, 2015, 19(1):147-183. |
[5] | DIJKSTRA A, JANSSEN F, DE BAKKER M, et al. Using spatial analysis to predict health care use at the local level: a case study of type 2 diabetes medication use and its association with demographic change and socioeconomic status[J]. PLoS One, 2013, 8(8):e72730. |
[6] | JUNG C, SUN C H. Development of a GIService based on spatial data mining for location choice of convenience stores in Taipei city[C]//Proceedings of 2006 Geoinformatics: Geospatial Information Technology.Wuhan: SPIE, 2006, 6421: 367-376. |
[7] | 蔡建南, 刘启亮, 徐枫, 等. 多层次空间同位模式自适应挖掘方法[J]. 测绘学报, 2016, 45(4):475-485. DOI: 10.11947/j.AGCS.2016.20150337. |
CAI Jiannan, LIU Qiliang, XU Feng, et al. An adaptive method for mining hierarchical spatial co-location patterns[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):475-485. DOI: 10.11947/j.AGCS.2016.20150337. | |
[8] | 姚晓婧. 面向城市服务设施数据的同位模式挖掘研究[J]. 测绘学报, 2018, 47(10):1426. DOI: 10.11947/j.AGCS.2018.20170580. |
YAO Xiaojing. Co-location researches on urban public-service facilities[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10):1426. DOI: 10.11947/j.AGCS.2018.20170580. | |
[9] | LIU Qiliang, LIU Wenkai, DENG Min, et al. An adaptive detection of multilevel co-location patterns based on natural neighborhoods[J]. International Journal of Geographical Information Science, 2021, 35(3):556-581. |
[10] | QIN Kun, LIN Hui, YUE Yang, et al. Spatial humanities and geo-computation for social sciences: advances and applications[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):1-6. |
[11] | TOBLER W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970, 46:234. |
[12] | YOO J S, SHEKHAR S, CELIK M. A join-less approach for co-location pattern mining: a summary of results[C]//Proceedings of the 5th IEEE International Conference on Data Mining. Houston: IEEE, 2006. |
[13] | 艾廷华, 周梦杰, 李晓明. 网络空间同位模式的加色混合可视化挖掘方法[J]. 测绘学报, 2017, 46(6):753-759. DOI: 10.11947/j.AGCS.2017.20160324. |
AI Tinghua, ZHOU Mengjie, LI Xiaoming. Mining co-location pattern of network spatial phenomenon based on the law of additive color mixing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):753-759.DOI: 10.11947/j.AGCS.2017.20160324. | |
[14] | YOO J S, BOW M. Mining spatial colocation patterns: a different framework[J]. Data Mining and Knowledge Discovery, 2012, 24(1):159-194. |
[15] | SHEKHAR S, HUANG Y. Discovering spatial co-location patterns: a summary of results[C]//Proceedings of 2001 International symposium on spatial and temporal databases.Berlin: Springer, 2001: 236-256. |
[16] | HUANG Y, SHEKHAR S, XIONG H. Discovering colocation patterns from spatial data sets: a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12):1472-1485. |
[17] | AGRAWAL R, IMIELIŃSKI T, SWAMI A. Mining association rules between sets of items in large databases[C]//Proceedings of 1993 ACM SIGMOD international conference on Management of data. Washington: ACM Press, 1993: 207-216. |
[18] | YU Wenhao, AI Tinghua, HE Yakun, et al. Spatial co-location pattern mining of facility points-of-interest improved by network neighborhood and distance decay effects[J]. International Journal of Geographical Information Science, 2017, 31(2):280-296. |
[19] | 禹文豪, 艾廷华, 刘鹏程, 等. 设施POI分布热点分析的网络核密度估计方法[J]. 测绘学报, 2015, 44(12):1378-1383,1400. DOI: 10.11947/j.AGCS.2015.20140538. |
YU Wenhao, AI Tinghua, LIU Pengcheng, et al. Network kernel density estimation for the analysis of facility POI hotspots[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1378-1383,1400. DOI: 10.11947/j.AGCS.2015.20140538. | |
[20] | ZHOU Mengjie, AI Tinghua, WU Chao, et al. A visualization approach for discovering colocation patterns[J]. International Journal of Geographical Information Science, 2019, 33(3):567-592. |
[21] | 刘文凯, 刘启亮, 蔡建南. 自然邻域支持下的空间同位模式挖掘方法[J]. 测绘学报, 2019, 48(1):95-105. DOI: 10.11947/j.AGCS.2019.20170653. |
LIU Wenkai, LIU Qiliang, CAI Jiannan. Discovery of co-location patterns based on natural neighborhood[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):95-105.DOI: 10.11947/j.AGCS.2019.20170653. | |
[22] | YOO J S, SHEKHAR S, SMITH J, et al. A partial join approach for mining co-location patterns[C]//Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems.Washington: ACM Press, 2004: 241-249. |
[23] | MOHAN P, SHEKHAR S, SHINE J A, et al. A neighborhood graph based approach to regional co-location pattern discovery: a summary of results[C]//Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago: ACM Press, 2011: 122-132. |
[24] | 艾廷华. 深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9):1170-1182. DOI: 10.11947/j.AGCS.2021.20210091. |
AI Tinghua. Some thoughts on deep learning enabling cartography[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9):1170-1182.DOI: 10.11947/j.AGCS.2021.20210091. | |
[25] | CHIAN V C, HILDEBRANDT M, RUNKLER T, et al. Learning through structure: towards deep neuromorphic knowledge graph embeddings[C]//Proceedings of 2021 International Conference on Neuromorphic Computing. Wuhan: IEEE, 2021: 61-70. |
[26] | ZHANG Zhenghao, HUANG Jianbin, TAN Qinglin. Association rules enhanced knowledge graph attention network[J]. Knowledge-Based Systems, 2022, 239:108038. |
[27] | 陈崇成, 林剑峰, 吴小竹, 等. 基于NoSQL的海量空间数据云存储与服务方法[J]. 地球信息科学学报, 2013, 15(2):166-174. |
CHEN Chongcheng, LIN Jianfeng, WU Xiaozhu, et al. Massive geo-spatial data cloud storage and services based on NoSQL database technique[J]. Journal of Geo-Information Science, 2013, 15(2):166-174. | |
[28] | MILLER J J. Graph database applications and concepts with Neo4j[C]//Proceedings of 2013 Southern Association for Information Systems Conference. Atlanta: [s.n.], 2013: 2324. |
[29] | LEE D T, SCHACHTER B J. Two algorithms for constructing a Delaunay triangulation[J]. International Journal of Computer & Information Sciences, 1980, 9(3):219-242. |
[30] | ZHANG Lihua, TANG Lulu, JIA Shuaidong, et al. A collaborative simplification method for multiple coastlines based on the hierarchical triangulation network partition[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):93-104. |
[31] | BATRA S, TYAGI C. Comparative analysis of relational and graph databases[J]. International Journal of Soft Computing Engineering, 2012, 2(2):509-512. |
[32] | 边馥苓, 万幼. k-邻近空间关系下的空间同位模式挖掘算法[J]. 武汉大学学报(信息科学版), 2009, 34(3):331-334,338. |
BIAN Fuling, WAN You. A novel spatial co-location pattern mining algorithm based on k-nearest feature relationship[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3):331-334,338. |
[1] | DENG Min, CHEN Kaiqi, SHI Yan, CHEN Yuanfang, GUO Yiwen. Point process decomposition method for multi-scale spatial co-location pattern mining [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 258-268. |
[2] | CAI Jiannan, LIU Qiliang, XU Feng, DENG Min, HE Zhanjun, TANG Jianbo. An Adaptive Method for Mining Hierarchical Spatial Co-location Patterns [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 475-485. |
[3] | . Researches on User Action Monitoring and Data Mining in Adaptive Cartographic Visualization System [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4): 0-440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||