[1] 刘文凯, 刘启亮, 蔡建南. 自然邻域支持下的空间同位模式挖掘方法[J]. 测绘学报, 2019, 48(1):95-105. DOI:10.11947/j.AGCS.2019.20170653. LIU Wenkai, LIU Qiliang, CAI Jiannan. Discovery of co-location patterns based on natural neighborhood[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):95-105. DOI:10.11947/j.AGCS.2019.20170653. [2] BARUA S, SANDER J. Mining statistically significant co-location and segregation patterns[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5):1185-1199. [3] 李光强, 邓敏, 朱建军. 基于Voronoi图的空间关联规则挖掘方法研究[J]. 武汉大学学报(信息科学版), 2008, 33(12):1242-1245. LI Guangqiang, DENG Min, ZHU Jianjun. Spatial association rules mining methods based on Voronoi diagram[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1242-1245. [4] YOO J S, SHEKHAR S. A joinless approach for mining spatial colocation patterns[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10):1323-1337. [5] HUANG Yan, SHEKHAR S, XIONG Hui. Discovering colocation patterns from spatial data sets:a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12):1472-1485. [6] KOPERSKI K, HAN J. Discovery of spatial association rules in geographic information databases[C]//Proceeding of the 4th International Symposium on Spatial Databases. Portland:Springer, 1995:47-66. [7] SHEKHAR S, HUANG Y. Discovering spatial co-location patterns:a summary of results[C]//Proceeding of the 7th International Symposium on Spatial and Temporal Databases. Redondo Beach, CA:Springer, 2001:236-256. [8] Nilsson I M, Smirnov O A. Measuring the effect of transportation infrastructure on retail firm co-location patterns[J]. Journal of Transport Geography, 2016, 51:110-118. [9] YOO J S, SHEKHAR S, SMITH J, et al. A partial join approach for mining co-location patterns[C]//Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems. New York, NY:ACM, 2004:241-249. [10] XIAO Xiangye, XIE Xing, LUO Qiong, et al. Density based co-location pattern discovery[C]//Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Irvine, CA:ACM, 2008:1-10. [11] DENG Min, CAI Jiannan, LIU Qiliang, et al. Multi-level method for discovery of regional co-location patterns[J]. International Journal of Geographical Information Science, 2017, 31(9):1846-1870. [12] CAI Jiannan, DENG Min, LIU Qiliang, et al. Nonparametric significance test for discovery of network-constrained spatial co-location patterns[J]. Geographical Analysis, 2019, 51(1):3-22. [13] CELIK M, KANG J M, SHEKHAR S. Zonal co-location pattern discovery with dynamic parameters[C]//Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007). Omaha, NE:IEEE, 2007:433-438. [14] DING Wei, EICK C F, YUAN Xiaojing, et al. A framework for regional association rule mining and scoping in spatial datasets[J]. Geoinformatica, 2011, 15(1):1-28. [15] QIAN Feng, CHIEW K, HE Qinming, et al. Mining regional co-location patterns with kNNG[J]. Journal of Intelligent Information Systems, 2014, 42(3):485-505. [16] 蔡建南, 刘启亮, 徐枫, 等. 多层次空间同位模式自适应挖掘方法[J]. 测绘学报, 2016, 45(4):475-485. DOI:10.11947/j.AGCS.2016.20150337. CAI Jiannan, LIU Qiliang, XU Feng, et al. An adaptive method for mining hierarchical spatial co-location patterns[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4):475-485. DOI:10.11947/j.AGCS.2016.20150337. [17] 裴韬, 李婷, 周成虎. 时空点过程:一种新的地学数据模型、分析方法和观察视角[J]. 地球信息科学学报, 2013, 15(6):793-800. PEI Tao, LI Ting, ZHOU Chenghu. Spatiotemporal point process:a new data model, analysis methodology and viewpoint for geoscientific problem[J]. Journal of Geo-Information Science, 2013, 15(6):793-800. [18] PEI T. A non-parameter index for differentiating between heterogeneity and randomness[J]. Mathematical Geosciences, 2011, 43:345-362. [19] PEI Tao, ZHU Axing, ZHOU Chenghu, et al. A new approach to the nearest-neighbour method to discover cluster features in overlaid spatial point processes[J]. International Journal of Geographical Information Science, 2006, 20(2):153-168. [20] KARLIS D, XEKALAKI E. Choosing initial values for the EM algorithm for finite mixtures[J]. Computational Statistics & Data Analysis, 2003, 41(3-4):577-590. [21] MOHAN P, SHEKHAR S, SHINE J A, et al. A neighborhood graph based approach to regional co-location pattern discovery:a summary of results[C]//Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Illinois, Chicago:ACM, 2011:122-132. [22] YOO J S, BOW M. Mining spatial colocation patterns:a different framework[J]. Data Mining and Knowledge Discovery, 2012, 24(1):159-194. [23] BYERS S, RAFTERY A E. Nearest-neighbor clutter removal for estimating features in spatial point processes[J]. Journal of the American Statistical Association, 1998, 93(442):577-584. [24] HUANG Yan, ZHANG Pusheng. On the relationships between clustering and spatial co-location pattern mining[C]//Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06). Arlington, VA:IEEE, 2006:513-522. [25] ANDRESEN M A. The ambient population and crime analysis[J]. The Professional Geographer, 2011, 63(2):193-212. [26] TATEM A J. WorldPop, open data for spatial demography[J]. Scientific Data, 2017, 4(1):170004. [27] DUAN Kaibo, KEERTHI S S, CHU Wei, et al. Multi-category classification by soft-max combination of binary classifiers[C]//Proceeding of the 4th International Workshop on Multiple Classifier Systems. Guildford:Springer, 2003:125-134. |