Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (10): 1993-2006.doi: 10.11947/j.AGCS.2024.20230220.
• Geodesy and Navigation • Previous Articles
Meng SUN1,2,(), Yunjia WANG1,2(), Qianxin WANG1,2, Guoliang CHEN1,2, Zengke LI1,2
Received:
2023-06-20
Published:
2024-11-26
Contact:
Yunjia WANG
E-mail:msun@cumt.edu.cn;wyjc411@163.com
About author:
SUN Meng (1995—), male, PhD, lecturer, majors in indoor positioning and navigation. E-mail: msun@cumt.edu.cn
Supported by:
CLC Number:
Meng SUN, Yunjia WANG, Qianxin WANG, Guoliang CHEN, Zengke LI. Wi-Fi RTT/RSS fusion localization CRLB derivation and optimal access points layout design[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1993-2006.
Tab.1
Wi-Fi FTM positioning methods comparison"
定位方法 | NLoS/LoS识别 | 测距补偿 | 测试场景 | 定位精度 |
---|---|---|---|---|
Wi-Fi FTM+地图[ | 否 | 无 | 试验室办公环境(>1000 m2) | <2 m (90%) |
Wi-Fi FTM+GPS+里程计[ | 否 | 有/多径补偿 | 市区街道/住宅区/郊区环境 | 1.3 m/2.1 m/0.8 m |
Wi-Fi FTM+RSS测距[ | 否 | 有/钟差补偿 | 室内房间(16.7 m×12.14 m) | 1.44 m |
Wi-Fi FTM+RSS测距+PDR[ | 否 | 有/RSS测距 | 建筑楼/办公室 | 0.58 m(50%) |
Wi-Fi RSS测距+FTM+PDR[ | 否 | 有/RSS测距 | 2层试验室环境(33 m×9 m) | <1.1 m(67.5%) |
Wi-Fi RSS测距+FTM+PDR[ | 无 | 有/RSS测距 | 室内办公环境(约126 m2) | 0.39 m |
时空约束的Wi-Fi FTM定位[ | 无 | 无 | 办公室环境 | <1 m (80%) |
基于高斯模型的Wi-Fi FTM定位[ | 是 | 无 | 试验室办公环境(20 m×8 m) | <1 m |
基于高斯过程回归的Wi-Fi FTM定位[ | 是 | 有/NLOS误差补偿 | 试验室办公环境(20 m×8 m) | <1 m |
Wi-Fi FTM+PDR[ | 是 | 有/测距误差补偿 | 试验室办公环境(20 m×8 m) | 0.98 m |
Wi-Fi FTM+Encoder+INS[ | 否 | 无 | LoS/NLoS环境 | 0.54 m/0.77 m |
Wi-Fi FTM+地图+MEMS[ | 是 | 无 | 2层试验室环境 | <1 m (94%) |
[1] | YANG Yuanxi. Resilient PNT concept frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3):1-7. |
[2] |
陈锐志, 陈亮. 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46(10):1316-1326. DOI:.
doi: 10.11947/j.AGCS.2017.20170383 |
CHEN Ruizhi, CHEN Liang. Indoor positioning with smartphones: the state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326. DOI:.
doi: 10.11947/j.AGCS.2017.20170383 |
|
[3] |
陈锐志, 郭光毅, 叶锋, 等. 智能手机音频信号与MEMS传感器的紧耦合室内定位方法[J]. 测绘学报, 2021, 50(2):143-152. DOI:.
doi: 10.11947/j.AGCS.2021.20200551 |
CHEN Ruizhi, GUO Guangyi, YE Feng, et al. Tightly-coupled integration of acoustic signal and MEMS sensors on smartphones for indoor positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):143-152. DOI:.
doi: 10.11947/j.AGCS.2021.20200551 |
|
[4] | IEEE Standard Association. IEEE standard for information technology—telecommunications and information exchange between systems local and metropolitan area networks-specific requirements—Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. [S.l.]: IEEE, 2016. |
[5] | ANDROID Developers. Wi-Fi location: ranging with RTT[EB/OL]. [2024-02-08]. https://developer.android.com/develop/connectivity/wifi/wifi-rtt. |
[6] | BANIN L, SCHATZBERG U, AMIZUR Y. WiFi FTM and map information fusion for accurate positioning[C]//Proceedings of 2016 International Conference on Indoor Positioning and Indoor Navigation. Alcalá de Henares: IEEE, 2016. |
[7] | BANIN L, BAR-SHALOM O, DVORECKI N, et al. Scalable Wi-Fi client self-positioning using cooperative FTM-sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(10):3686-3698. |
[8] | DVORECKI N, BAR-SHALOM O, BANIN L, et al. A machine learning approach for Wi-Fi RTT ranging[C]//Proceedings of 2019 International Technical Meeting of the Institute of Navigation. Reston: Institute of Navigation, 2019. |
[9] | IBRAHIM M, LIU Hansi, JAWAHAR M, et al. Verification: accuracy evaluation of WiFi fine time measurements on an open platform[C]//Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. New Delhi: ACM Press, 2018. |
[10] | IBRAHIM M, ROSTAMI A, YU Bo, et al. Wi-Go: accurate and scalable vehicle positioning using WiFi fine timing measurement[C]//Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services. Toronto: ACM Press, 2020. |
[11] | JIOKENG K, JAKLLARI G, TCHANA A, et al. When FTM discovered MUSIC: accurate WiFi-based ranging in the presence of multipath[C]//Proceedings of 2020 IEEE Conference on Computer Communications. Toronto: IEEE, 2020: 1857-1866. |
[12] | CHAN Haowei, LAI A I C, WU R B. Transfer learning of Wi-Fi FTM responder positioning with NLOS identification[C]//Proceedings of 2021 IEEE Topical Conference on Wireless Sensors and Sensor Networks. San Diego: IEEE, 2021: 23-26. |
[13] | DONG Yinhuan, ARSLAN T, YANG Yunjie. Real-time NLOS/LOS identification for smartphone-based indoor positioning systems using WiFi RTT and RSS[J]. IEEE Sensors Journal, 2022, 22(6):5199-5209. |
[14] | YU Yue, CHEN Ruizhi, CHEN Liang, et al. A robust dead reckoning algorithm based on Wi-Fi FTM and multiple sensors[J]. Remote Sensing, 2019, 11(5):504. |
[15] | GUO Guangyi, CHEN Ruizhi, YE Feng, et al. Indoor smartphone localization: a hybrid WiFi RTT-RSS ranging approach[J]. IEEE Access, 2019, 7:176767-176781. |
[16] | GUO Guangyi, CHEN Ruizhi, YE Feng, et al. Arobust integration platform of Wi-Fi RTT, RSS signal, and MEMS-IMU for locating commercial smartphone indoors[J]. IEEE Internet of Things Journal, 2022, 9(17):16322-16331. |
[17] | YU Yue, CHEN Ruizhi, CHEN Liang, et al. Precise 3D indoor localization based on Wi-Fi FTM and built-in sensors[J]. IEEE Internet of Things Journal, 2020, 7(12):11753-11765. |
[18] | GUO Guangyi, CHEN Ruizhi, NIU Xiaoguang, et al. Factor graph framework for smartphone indoor localization: integrating data-driven PDR and Wi-Fi RTT/RSS ranging[J]. IEEE Sensors Journal, 2023, 23(11):12346-12354. |
[19] | SHAO Wenhua, LUO Haiyong, ZHAO Fang, et al. Accurate indoor positioning using temporal-spatial constraints based on Wi-Fi fine time measurements[J]. IEEE Internet of Things Journal, 2020, 7(11):11006-11019. |
[20] | 阎硕. 基于Wi-Fi精细时间测量的测距定位算法研究[D]. 北京: 北京邮电大学, 2020. |
YAN Shuo. The research of Wi-Fi fine time measurement based indoor positioning[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. | |
[21] | 邵文华. 室内移动位置感知关键技术研究[D]. 北京: 北京邮电大学, 2019. |
SHAO Wenhua. Research on key technologies of indoor mobile location awareness[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | |
[22] | SI Minghao, WANG Yunjia, XU Shenglei, et al. A Wi-Fi FTM-based indoor positioning method with LOS/NLOS identification[J]. Applied Sciences, 2020, 10(3):956. |
[23] | CAO Hongji, WANG Yunjia, BI Jingxue, et al. Indoor positioning method using WiFi RTT based on LOS identification and range calibration[J]. ISPRS International Journal of Geo-Information, 2020, 9(11):627. |
[24] | SUN Meng, WANG Yunjia, XU Shenglei, et al. Indoor positioning tightly coupled Wi-Fi FTM ranging and PDR based on the extended Kalman filter for smartphones[J]. IEEE Access, 2020, 8:49671-49684. |
[25] | ZHOU Baoding, WU Zhiqian, CHEN Zhipeng, et al. Wi-Fi RTT/encoder/INS-based robot indoor localization using smartphones[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5):6683-6694. |
[26] | HUANG Lu, YU Baoguo, LI Hongsheng, et al. HPIPS: a high-precision indoor pedestrian positioning system fusing WiFi-RTT, MEMS, and map information[J]. Sensors, 2020, 20(23):6795. |
[27] | KAY S M. Fundamentals of statistical signal processing[M]. Englewood Cliffs: Prentice-Hall PTR, 1993. |
[28] | PLETS D, JOSEPH W, VANHECKE K, et al. Coverage prediction and optimization algorithms for indoor environments[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012(1):123. |
[29] | SUN Meng, WANG Yunjia, XU Shenglei, et al. Indoor geomagnetic positioning using the enhanced genetic algorithm-based extreme learning machine[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-11. |
[1] | Jianhua CHENG, Sicheng CHEN, Nan ZANG, Sixiang CHENG, Guojing ZHAO, Zifan MA. PPP/INS tightly integrated enhancement model considering adaptive short-term height variation rate constraint [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1761-1776. |
[2] | Liang LI, Liuqi WANG, Ningbo WANG, Min LI, Zishen LI, Fengze DU, Shuai PANG, Zhibo NA. Vectorized integrity monitoring method for PPP-RTK correction products [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1777-1789. |
[3] | Zhixiang FANG, Lubin WANG. Detecting pedestrian intention using EEG signals in navigation [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1829-1841. |
[4] | Yiruo LIN, Kegen YU, Feiyang ZHU, Jinwei BU. A RSSI ranging algorithm based on GWO-BP neural network [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1564-1573. |
[5] | Wanxiang GOU, Chonghui LI, Yinhu ZHAN, Yuan YANG, Yong ZHENG. Efficiency analysis of polarizing filter enhanced signal to noise ratio for daytime star measurement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1574-1585. |
[6] | Junsheng DING. Research on GNSS tropospheric delay modeling and spatial-temporal characteristics analysis of bias [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1659-1659. |
[7] | Chao CHEN. Research on ambiguity resolution of INS-aided high-precision GNSS in urban environment [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1662-1662. |
[8] | XU Nan. Monitoring global coastline changes over 1987—2016 using Landsat data [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 691-691. |
[9] | YUAN Junjun, LI Kai, TANG Chengpan, ZHOU Shanshi, HU Xiaogong, CAO Jianfeng. Accuracy analysis of LEO satellites orbit prediction for precise position service [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 640-647. |
[10] | YANG Kaichun, LV Zhiping, LI Linyang, KUANG Yingcai, XU Wei, ZHENG Xi. Sliding window single-frequency real time precise point positioning algorithm with epoch constraints [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 648-657. |
[11] | ZHU Feng. GNSS/SINS/Vision multi-sensors integration for precise positioning and orientation determination [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 782-782. |
[12] | LIU Bin. Theory and method of spatiotemporal analysis, modeling and inversion of vertical GNSS coordinate time series based on independent component analysis [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 783-783. |
[13] | HUANG Gang. Research on automatic classification method of mobile laser point cloud data based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 786-786. |
[14] | CHAI Dashuai. Study on the theory and method in integrated navigation of multi-constellation GNSS/INS [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 787-787. |
[15] | LIU Gen. Research on methodology and the key technology of uncombined ambiguity resolution for multi-frequency and multi-GNSS precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 798-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||