Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (10): 1993-2006.doi: 10.11947/j.AGCS.2024.20230220.
• Geodesy and Navigation • Previous Articles Next Articles
Meng SUN1,2,(
), Yunjia WANG1,2(
), Qianxin WANG1,2, Guoliang CHEN1,2, Zengke LI1,2
Received:2023-06-20
Online:2024-11-26
Published:2024-11-26
Contact:
Yunjia WANG
E-mail:msun@cumt.edu.cn;wyjc411@163.com
About author:SUN Meng (1995—), male, PhD, lecturer, majors in indoor positioning and navigation. E-mail: msun@cumt.edu.cn
Supported by:CLC Number:
Meng SUN, Yunjia WANG, Qianxin WANG, Guoliang CHEN, Zengke LI. Wi-Fi RTT/RSS fusion localization CRLB derivation and optimal access points layout design[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1993-2006.
Tab.1
Wi-Fi FTM positioning methods comparison"
| 定位方法 | NLoS/LoS识别 | 测距补偿 | 测试场景 | 定位精度 |
|---|---|---|---|---|
| Wi-Fi FTM+地图[ | 否 | 无 | 试验室办公环境(>1000 m2) | <2 m (90%) |
| Wi-Fi FTM+GPS+里程计[ | 否 | 有/多径补偿 | 市区街道/住宅区/郊区环境 | 1.3 m/2.1 m/0.8 m |
| Wi-Fi FTM+RSS测距[ | 否 | 有/钟差补偿 | 室内房间(16.7 m×12.14 m) | 1.44 m |
| Wi-Fi FTM+RSS测距+PDR[ | 否 | 有/RSS测距 | 建筑楼/办公室 | 0.58 m(50%) |
| Wi-Fi RSS测距+FTM+PDR[ | 否 | 有/RSS测距 | 2层试验室环境(33 m×9 m) | <1.1 m(67.5%) |
| Wi-Fi RSS测距+FTM+PDR[ | 无 | 有/RSS测距 | 室内办公环境(约126 m2) | 0.39 m |
| 时空约束的Wi-Fi FTM定位[ | 无 | 无 | 办公室环境 | <1 m (80%) |
| 基于高斯模型的Wi-Fi FTM定位[ | 是 | 无 | 试验室办公环境(20 m×8 m) | <1 m |
| 基于高斯过程回归的Wi-Fi FTM定位[ | 是 | 有/NLOS误差补偿 | 试验室办公环境(20 m×8 m) | <1 m |
| Wi-Fi FTM+PDR[ | 是 | 有/测距误差补偿 | 试验室办公环境(20 m×8 m) | 0.98 m |
| Wi-Fi FTM+Encoder+INS[ | 否 | 无 | LoS/NLoS环境 | 0.54 m/0.77 m |
| Wi-Fi FTM+地图+MEMS[ | 是 | 无 | 2层试验室环境 | <1 m (94%) |
| [1] | YANG Yuanxi. Resilient PNT concept frame[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3):1-7. |
| [2] |
陈锐志, 陈亮. 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46(10):1316-1326. DOI:.
doi: 10.11947/j.AGCS.2017.20170383 |
|
CHEN Ruizhi, CHEN Liang. Indoor positioning with smartphones: the state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1316-1326. DOI:.
doi: 10.11947/j.AGCS.2017.20170383 |
|
| [3] |
陈锐志, 郭光毅, 叶锋, 等. 智能手机音频信号与MEMS传感器的紧耦合室内定位方法[J]. 测绘学报, 2021, 50(2):143-152. DOI:.
doi: 10.11947/j.AGCS.2021.20200551 |
|
CHEN Ruizhi, GUO Guangyi, YE Feng, et al. Tightly-coupled integration of acoustic signal and MEMS sensors on smartphones for indoor positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):143-152. DOI:.
doi: 10.11947/j.AGCS.2021.20200551 |
|
| [4] | IEEE Standard Association. IEEE standard for information technology—telecommunications and information exchange between systems local and metropolitan area networks-specific requirements—Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. [S.l.]: IEEE, 2016. |
| [5] | ANDROID Developers. Wi-Fi location: ranging with RTT[EB/OL]. [2024-02-08]. https://developer.android.com/develop/connectivity/wifi/wifi-rtt. |
| [6] | BANIN L, SCHATZBERG U, AMIZUR Y. WiFi FTM and map information fusion for accurate positioning[C]//Proceedings of 2016 International Conference on Indoor Positioning and Indoor Navigation. Alcalá de Henares: IEEE, 2016. |
| [7] | BANIN L, BAR-SHALOM O, DVORECKI N, et al. Scalable Wi-Fi client self-positioning using cooperative FTM-sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(10):3686-3698. |
| [8] | DVORECKI N, BAR-SHALOM O, BANIN L, et al. A machine learning approach for Wi-Fi RTT ranging[C]//Proceedings of 2019 International Technical Meeting of the Institute of Navigation. Reston: Institute of Navigation, 2019. |
| [9] | IBRAHIM M, LIU Hansi, JAWAHAR M, et al. Verification: accuracy evaluation of WiFi fine time measurements on an open platform[C]//Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. New Delhi: ACM Press, 2018. |
| [10] | IBRAHIM M, ROSTAMI A, YU Bo, et al. Wi-Go: accurate and scalable vehicle positioning using WiFi fine timing measurement[C]//Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services. Toronto: ACM Press, 2020. |
| [11] | JIOKENG K, JAKLLARI G, TCHANA A, et al. When FTM discovered MUSIC: accurate WiFi-based ranging in the presence of multipath[C]//Proceedings of 2020 IEEE Conference on Computer Communications. Toronto: IEEE, 2020: 1857-1866. |
| [12] | CHAN Haowei, LAI A I C, WU R B. Transfer learning of Wi-Fi FTM responder positioning with NLOS identification[C]//Proceedings of 2021 IEEE Topical Conference on Wireless Sensors and Sensor Networks. San Diego: IEEE, 2021: 23-26. |
| [13] | DONG Yinhuan, ARSLAN T, YANG Yunjie. Real-time NLOS/LOS identification for smartphone-based indoor positioning systems using WiFi RTT and RSS[J]. IEEE Sensors Journal, 2022, 22(6):5199-5209. |
| [14] | YU Yue, CHEN Ruizhi, CHEN Liang, et al. A robust dead reckoning algorithm based on Wi-Fi FTM and multiple sensors[J]. Remote Sensing, 2019, 11(5):504. |
| [15] | GUO Guangyi, CHEN Ruizhi, YE Feng, et al. Indoor smartphone localization: a hybrid WiFi RTT-RSS ranging approach[J]. IEEE Access, 2019, 7:176767-176781. |
| [16] | GUO Guangyi, CHEN Ruizhi, YE Feng, et al. Arobust integration platform of Wi-Fi RTT, RSS signal, and MEMS-IMU for locating commercial smartphone indoors[J]. IEEE Internet of Things Journal, 2022, 9(17):16322-16331. |
| [17] | YU Yue, CHEN Ruizhi, CHEN Liang, et al. Precise 3D indoor localization based on Wi-Fi FTM and built-in sensors[J]. IEEE Internet of Things Journal, 2020, 7(12):11753-11765. |
| [18] | GUO Guangyi, CHEN Ruizhi, NIU Xiaoguang, et al. Factor graph framework for smartphone indoor localization: integrating data-driven PDR and Wi-Fi RTT/RSS ranging[J]. IEEE Sensors Journal, 2023, 23(11):12346-12354. |
| [19] | SHAO Wenhua, LUO Haiyong, ZHAO Fang, et al. Accurate indoor positioning using temporal-spatial constraints based on Wi-Fi fine time measurements[J]. IEEE Internet of Things Journal, 2020, 7(11):11006-11019. |
| [20] | 阎硕. 基于Wi-Fi精细时间测量的测距定位算法研究[D]. 北京: 北京邮电大学, 2020. |
| YAN Shuo. The research of Wi-Fi fine time measurement based indoor positioning[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. | |
| [21] | 邵文华. 室内移动位置感知关键技术研究[D]. 北京: 北京邮电大学, 2019. |
| SHAO Wenhua. Research on key technologies of indoor mobile location awareness[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. | |
| [22] | SI Minghao, WANG Yunjia, XU Shenglei, et al. A Wi-Fi FTM-based indoor positioning method with LOS/NLOS identification[J]. Applied Sciences, 2020, 10(3):956. |
| [23] | CAO Hongji, WANG Yunjia, BI Jingxue, et al. Indoor positioning method using WiFi RTT based on LOS identification and range calibration[J]. ISPRS International Journal of Geo-Information, 2020, 9(11):627. |
| [24] | SUN Meng, WANG Yunjia, XU Shenglei, et al. Indoor positioning tightly coupled Wi-Fi FTM ranging and PDR based on the extended Kalman filter for smartphones[J]. IEEE Access, 2020, 8:49671-49684. |
| [25] | ZHOU Baoding, WU Zhiqian, CHEN Zhipeng, et al. Wi-Fi RTT/encoder/INS-based robot indoor localization using smartphones[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5):6683-6694. |
| [26] | HUANG Lu, YU Baoguo, LI Hongsheng, et al. HPIPS: a high-precision indoor pedestrian positioning system fusing WiFi-RTT, MEMS, and map information[J]. Sensors, 2020, 20(23):6795. |
| [27] | KAY S M. Fundamentals of statistical signal processing[M]. Englewood Cliffs: Prentice-Hall PTR, 1993. |
| [28] | PLETS D, JOSEPH W, VANHECKE K, et al. Coverage prediction and optimization algorithms for indoor environments[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012(1):123. |
| [29] | SUN Meng, WANG Yunjia, XU Shenglei, et al. Indoor geomagnetic positioning using the enhanced genetic algorithm-based extreme learning machine[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-11. |
| [1] | Bofeng LI, Long CHEN, Leitong YUAN. A high-precision deformation monitoring method with GNSS multi-baseline solutions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2116-2128. |
| [2] | Tao GENG, Qiang LI, Lingyue CHENG, Jingnan LIU. The correction method of relativistic effects for GNSS and LEO satellites [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2129-2141. |
| [3] | Shoujian ZHANG, Xinyun CAO, Yulong GE, Fei SHEN. Yaw attitude modeling of GLONASS-K and GLONASS-M+ satellites and its impact on satellite clock estimation and precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2142-2152. |
| [4] | Jian CHEN, Jiahui WANG, Xingwang ZHAO, Chao LIU, Chunyang LIU, Xuexiang YU. Single-epoch RTK positioning optimization method based on BDS-3/Galileo multi-frequency ionosphere-reduced combinations [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2153-2167. |
| [5] | Xinrui LI, Xuanyu QU, Qin ZHANG, Bao SHU, Lingen MENG, Hao XU, Shuangcheng ZHANG, Guanwen HUANG, Hanwen WU, Li WANG. A data-driven multipath error mitigation method for PPP-RTK and its application in deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2168-2181. |
| [6] | Jiaxin GAO, Xin SUI, Changqiang WANG, Aigong XU, Zhengxu SHI. Loop closure detection method for LiDAR SLAM supported by stable static point cloud clusters [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2194-2205. |
| [7] | Yupeng GU, Wanke LIU, Xiaohong ZHANG, Jie HU, Shujie HU, Weihao LEI, Kai ZHENG. Neural network-based GNSS stochastic model generation method by fisheye images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2206-2218. |
| [8] | Zhijian CHEN. Research on LiDAR SLAM/INS/UWB multisource information fusion positioning theory and method [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2290-2290. |
| [9] | Weilong RAO. Study on mass migration and crustal deformation of the Qinghai-Xizang Plateau based on GRACE time-variable gravity [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2291-2291. |
| [10] | Liu YANG. Research on the key models of atmospheric water vapor inversion using precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2294-2294. |
| [11] | Ji QI. Foundation model for visible remote sensing image interpret guided by generalized supervisory signal [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2296-2296. |
| [12] | Shuren GUO, Hongliang CAI, Weiguang GAO, Wei ZHOU, Changjiang GENG, Gang LI, Ming DONG, Chengeng SU, Kun JIANG, Yinan MENG, Lei CHEN, Junyang PAN, Kai LI, Qifen LI, Xiaomei TANG, Shuangna ZHANG, Xiaogong HU. A novel architecture of global navigation satellite system for accurate and trusted PNT services [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1934-1953. |
| [13] | Yuanyuan GU, Xu YAO, Lu AN, Gang QIAO, Tong HAO. Analysis and evaluation of route roughness along the CHINARE inland traverse based on high-precision dynamic GNSS data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1968-1979. |
| [14] | Hanyun SONG, Xin LI, Guanwen HUANG, Hang LI. Refinement of UAV barometer altimetry model and GNSS/SINS integrated positioning enhancement [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1980-1991. |
| [15] | Bo LI. BDS-3/GNSS PPP-RTK augmented products estimation and credible positioning methods [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2097-2097. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||