Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (9): 1829-1841.doi: 10.11947/j.AGCS.2024.20230444
• Cartography and Geoinformation • Previous Articles
Received:
2023-09-29
Published:
2024-10-16
About author:
FANG Zhixiang (1977—), male, PhD, professor, majors in space-time geographic information system, spatial and temporal modeling and analysis of human activity big data, the theories and methods of pedestrian navigation. E-mail: zxfang@whu.edu.cn
Supported by:
CLC Number:
Zhixiang FANG, Lubin WANG. Detecting pedestrian intention using EEG signals in navigation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(9): 1829-1841.
Tab.2
Average classification accuracy of different models"
模型 | 右转 | 左转 | 直行 | 停止 | ||||
---|---|---|---|---|---|---|---|---|
精确率 | 召回率 | 精确率 | 召回率 | 精确率 | 召回率 | 精确率 | 召回率 | |
EEGNet | 50.6±10.2 | 49.3±12.8 | 49.4±12.3 | 49.7±10.4 | 53.7±9.3 | 54.1±12.3 | 54.5±11.8 | 55.1±11.7 |
GCN | 50.4±9.1 | 48.6±11.6 | 47.4±14.1 | 48.4±9.9 | 55.3±10.4 | 55.9±13.6 | 55.4±14.4 | 56.1±13.5 |
STFCN_CSP | 49.1±7.5 | 45.2±7.8 | 46.7±9.6 | 46.9±11.5 | 54.2±9.8 | 55.8±12.0 | 54.1±10.7 | 56.1±10.5 |
STFCN_Freq | 35.9±11.6 | 35.1±9.7 | 36.8±9.0 | 35.6±9.9 | 37.4±10.2 | 38.4±10.3 | 37.6±9.4 | 36.3±8.6 |
MLP | 46.6±10.7 | 45.2±10.4 | 46.7±8.6 | 44.8±10.4 | 49.2±9.7 | 48.3±10.7 | 50.2±10.8 | 49.6±10.7 |
本文模型 | 50.2±6.4 | 47.5±7.5 | 48.6±9.2 | 48.9±10.3 | 55.6±8.6 | 56.7±11.9 | 55.5±11.3 | 56.7±11.4 |
[1] | 方志祥, 徐虹, 萧世伦, 等. 绝对空间定位到相对空间感知的行人导航研究趋势[J]. 武汉大学学报(信息科学版), 2018, 43(12):2173-2182. |
FANG Zhixiang, XU Hong, XIAO Shilun, et al. Pedestrian navigation research trend: from absolute space to relative space-based approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2173-2182. | |
[2] | 李德毅, 赵菲, 刘萌, 等. 自动驾驶量产的难点分析及展望[J]. 武汉大学学报(信息科学版), 2018, 43(12):1775-1779. |
LI Deyi, ZHAO Fei, LIU Meng, et al. Difficulty analysis and prospect of autonomous vehicle mass production[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1775-1779. | |
[3] | 吕超, 崔格格, 孟相浩, 等. 基于图表示的智能车行人意图识别方法[J]. 北京理工大学学报, 2022, 42(7):688-695. |
LÜ Chao, CUI Gege, MENG Xianghao, et al. Graph representation method for pedestrian intention recognition of intelligent vehicle[J]. Transactions of Beijing Institute of Technology, 2022, 42(7):688-695. | |
[4] | 方志祥, 罗浩, 李灵. 有限状态自动机辅助的行人导航状态匹配算法[J]. 测绘学报, 2017, 46(3):371-380. DOI: 10.11947/j.AGCS.2017.20160530. |
FANG Zhixiang, LUO Hao, LI Ling. A finite state machine aided pedestrian navigation state matching algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):371-380. DOI: 10.11947/j.AGCS.2017.20160530. | |
[5] | DOSHI A, TRIVEDI M M. On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(3):453-462. |
[6] | SHI Bowen, DONG Weihua, ZHAN Zhicheng. AdaFI-FCN: an adaptive feature integration fully convolutional network for predicting driver's visual attention[J]. Geo-spatial Information Science, 2022, 27(4):1-17. |
[7] | HEI Qiaosong, DONG Weihua, SHI Bowen. Detecting dynamic visual attention in augmented reality aided navigation environment based on a multi-feature integration fully convolutional network[J]. Cartography and Geographic Information Science, 2023, 50(1):63-78. |
[8] | RAJWAL S, AGGARWAL S. Convolutional neural network-based EEG signal analysis: a systematic review[J]. Archives of Computational Methods in Engineering, 2023, 30(6):3585-3615. |
[9] | WEI Ying, ZHOU Jun, WANG Yin, et al. A review of algorithm & hardware design for AI-based biomedical applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(2):145-163. |
[10] | KHALIFA Y, MANDIC D, SEJDIĆ E. A review of hidden Markov models and recurrent neural networks for event detection and localization in biomedical signals[J]. Information Fusion, 2021, 69:52-72. |
[11] | ZABIHI S M, BEAUCHEMIN S S, BAUER M A. Real-time driving manoeuvre prediction using IO-HMM and driver cephalo-ocular behaviour[C]//Proceedings of 2017 IEEE Intelligent Vehicles Symposium. Los Angeles: IEEE, 2017: 875-880. |
[12] | 张杨松, 卓彦, 尧德中. 脑电磁成像进展及展望[J]. 中国科学:生命科学, 2020, 50(11):1268-1284. |
ZHANG Yangsong, ZHUO Yan, YAO Dezhong. Progresses and prospects of brain electromagnetic imaging[J]. Scientia Sinica Vitae, 2020, 50(11):1268-1284. | |
[13] | NICOLAS-ALONSO L F, GOMEZ-GIL J. Brain computer interfaces, a review[J]. Sensors (Basel, Switzerland), 2012, 12(2):1211-1279. |
[14] | 董卫华, 廖华, 詹智成, 等. 2008年以来地图学眼动与视觉认知研究新进展[J]. 地理学报, 2019, 74(3):599-614. |
DONG Weihua, LIAO Hua, ZHAN Zhicheng, et al. New research progress of eye tracking-based map cognition in cartography since 2008[J]. Acta Geographica Sinica, 2019, 74(3):599-614. | |
[15] | STOJIC F, CHAU T. Nonspecific visuospatial imagery as a novel mental task for online EEG-based BCI control[J]. International Journal of Neural Systems, 2020, 30(6):2050026. |
[16] | SOUZA R H C E, NAVES E L M. Attention detection in virtual environments using EEG signals: a scoping review[J]. Frontiers in Physiology, 2021, 12:727840. |
[17] | KOHLI V, TRIPATHI U, CHAMOLA V, et al. A review on virtual reality and augmented reality use-cases of brain computer interface based applications for smart cities[J]. Microprocessors and Microsystems, 2022, 88:104392. |
[18] | WUNDERLICH A, GRAMANN K. Eye movement-related brain potentials during assisted navigation in real-world environments[J]. The European Journal of Neuroscience, 2021, 54(12):8336-8354. |
[19] | LIN C T, KING J T, SINGH A K, et al. Voice navigation effects on real-world lane change driving analysis using an electroencephalogram[J]. IEEE Access, 2018, 6:26483-26492. |
[20] | YU Yang, LIU Yadong, JIANG Jun, et al. An asynchronous control paradigm based on sequential motor imagery and its application in wheelchair navigation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(12):2367-2375. |
[21] | BOASHASH B, KHAN N A, BEN-JABEUR T. Time-frequency features for pattern recognition using high-resolution TFDs: a tutorial review[J]. Digital Signal Processing, 2015, 40:1-30. |
[22] | 王韬, 柯余峰, 王宁慈, 等. 空间滤波方法在脑-机接口中的应用及研究进展[J]. 中国生物医学工程学报, 2019, 38(5):599-608. |
WANG Tao, KE Yufeng, WANG Ningci, et al. Application and research development of spatial filtering method in brain-computer interfaces[J]. Chinese Journal of Biomedical Engineering, 2019, 38(5):599-608. | |
[23] | HE Bin, ASTOLFI L, VALDES-SOSA P A, et al. Electrophysiological brain connectivity: theory and implementation[J]. IEEE Transactions on Bio-Medical Engineering, 2019:2913928. |
[24] | GRAMFORT A, LUESSI M, LARSON E, et al. MEG and EEG data analysis with MNE-Python[J]. Frontiers in Neuroscience, 2013, 7:267. |
[25] | DHARMAPRANI D, NGUYEN H K, LEWIS T W, et al. A comparison of independent component analysis algorithms and measures to discriminate between EEG and artifact components[C]//Proceedings of 2016 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Orlando: IEEE, 2016: 825-828. |
[26] | CAMPOS VIOLA F, THORNE J, EDMONDS B, et al. Semi-automatic identification of independent components representing EEG artifact[J]. Clinical Neurophysiology, 2009, 120(5):868-877. |
[27] | DAMMERS J, SCHIEK M, BOERS F, et al. Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(10):2353-2362. |
[28] | 罗志增, 鲁先举, 周莹. 基于脑功能连接网络和样本熵的脑电信号特征提取[J]. 电子与信息学报, 2021, 43(2):412-418. |
LUO Zhizeng, LU Xianju, ZHOU Ying. EEG feature extraction based on brain function network and sample entropy[J]. Journal of Electronics & Information Technology, 2021, 43(2):412-418. | |
[29] | GROSSE-WENTRUP M, BUSS M. Multiclass common spatial patterns and information theoretic feature extraction[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(8):1991-2000. |
[30] | LI Xuan, WU Yunqiao, WEI Mengting, et al. A novel index of functional connectivity: phase lag based on Wilcoxon signed rank test[J]. Cognitive Neurodynamics, 2021, 15(4):621-636. |
[31] | STAM C J, NOLTE G, DAFFERTSHOFER A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources[J]. Human Brain Mapping, 2007, 28(11):1178-1193. |
[32] | VINCK M, OOSTENVELD R, VAN WINGERDEN M, et al. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias[J]. NeuroImage, 2011, 55(4):1548-1565. |
[33] | HAMILTON WL, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: Curran Associates Inc, 2017: 1025-1035. |
[34] | DIEHL F, BRUNNER T, LE TM, KNOLL A. Towards graph pooling by edge contraction[C]//Proceedings of 2019 ICML Workshop on Learning and Reasoning with Graph-structured Data. New York: ACM Press, 2019. |
[35] | SU Zidong, HU Zehui, LI Yangding. Hierarchical graph representation learning with local capsule pooling[C]//Proceedings of 2021 ACM Multimedia Asia. Gold Coast: ACM Press, 2021: 1-7. |
[36] | LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15(5):056013. |
[1] | XIAO Tianyuan, AI Tinghua, YU Huafei, YANG Min, LIU Pengcheng. A point cluster simplification approach of graph convolutional neural network for map generalization [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 158-172. |
[2] | ZHOU Baoding, ZHANG Wenxiang, HUANG Jincai, LI Qingquan. Indoor and outdoor integrated pedestrian network construction based on crowdsourced data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 718-728. |
[3] | FANG Zhixiang, LUO Hao, LI Ling. A Finite State Machine Aided Pedestrian Navigation State Matching Algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 371-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||