Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (8): 1644-1655.doi: 10.11947/j.AGCS.2024.20230258
• Cartography and Geoinformation • Previous Articles Next Articles
Mengjie ZHOU1,2,3(), Mengjie YANG1(
), Huiying CHEN1, Yumeng TIAN1, Yiliang WAN1, Jizhe XIA4,5
Received:
2023-06-08
Published:
2024-09-25
Contact:
Mengjie YANG
E-mail:mengjiezhou@hunnu.edu.cn;mengjiezhou@hunnu.edu.cn;yangmengjie@hunnu.edu.cn
About author:
ZHOU Mengjie (1990—), female, PhD, associate professor, majors in geographical information mining and visualization. E-mail: mengjiezhou@hunnu.edu.cn
Supported by:
CLC Number:
Mengjie ZHOU, Mengjie YANG, Huiying CHEN, Yumeng TIAN, Yiliang WAN, Jizhe XIA. Spatio-temporal cross K-function for geographical flows[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1644-1655.
Tab.2
The number of spatio-temporally associated vehicle flows identified by the local flow spatio-temporal cross K-function"
时间带宽/h | 不同空间带宽的车辆流数量 | ||||
---|---|---|---|---|---|
0.2 km | 0.4 km | 0.6 km | 0.8 km | 1.0 km | |
0.2 | 65 | 1341 | 5300 | 9696 | 13 608 |
0.4 | 280 | 3522 | 10 142 | 15 219 | 18 305 |
0.6 | 486 | 5514 | 13 030 | 18 098 | 21 034 |
0.8 | 752 | 7275 | 14 529 | 20 001 | 22 825 |
1.0 | 1065 | 8713 | 16 611 | 21 119 | 23 895 |
[1] | 裴韬, 舒华, 郭思慧, 等. 地理流的空间模式:概念与分类 [J]. 地球信息科学学报, 2020, 22(1): 30-40. |
PEI Tao, SHU Hua, GUO Sihui, et al. The concept and classification of spatial patterns of geographical flow[J]. Journal of Geoinformation Science, 2020, 22(1): 30-40. | |
[2] | ZHEN F, WANG B, CHEN Y. China's city network characteristics based on social network space: an empirical analysis of Sina Micro-blog [J]. Acta Geographica Sinica, 2012, 67(8): 1031-1043. |
[3] | TIZZONI M, BAJARDI P, DECUYPER A, et al. On the use of human mobility proxies for modeling epidemics [J]. PLoS Computational Biology, 2014, 10(7): e1003716. |
[4] | 石岩, 王达, 陈袁芳, 等. 流空间邻近关系约束下的流行病分布空间异常探测方法 [J]. 测绘学报, 2021, 50(6): 777-788. |
SHI Yan, WANG Da, CHEN Yuanfang, et al. An anomaly detection approach from spatio distributions of epidemic based on adjacency constraints in flow space[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 777-788. | |
[5] | 塔娜, 柴彦威. 行为地理学的学科定位与前沿方向[J]. 地理科学进展, 2022, 41(1): 1-15. |
TA Na, CHAI Yanwei. Disciplinary position and research frontiers of behavioral geography[J]. Progress in Geography, 2022, 41(1): 1-15. | |
[6] | CAI J, KWAN M-P. Discovering co-location patterns in multivariate spatial flow data[J]. International Journal of Geographical Information Science, 2022, 36(4): 720-748. |
[7] | SHU Hua, PEI Tao, SONG Ci, et al. L-function of geographical flows [J]. International Journal of Geographical Information Science, 2021, 35(4): 689-716. |
[8] | TAO R, THILL J-C. Flow cross K-function: a bivariate flow analytical method[J]. International Journal of Geographical Information Science, 2019, 33(10): 2055-2071. |
[9] | JIANG Jingyu, WANG Xi, LIU Tianyu, et al. Topological relationship model for geographical flows [J]. Cartography and Geographic Information Science, 2022, 49(6): 528-544. |
[10] | 邓敏, 蔡建南, 杨文涛, 等. 多模态地理大数据时空分析方法 [J]. 地球信息科学学报, 2020, 22(1): 41-56. |
DENG Min, CAI Jiannan, YANG Wentao, et al. Spatio-temporal analysis methods for multi-modal geographic big data[J]. Journal of Geo-information Science, 2020, 22(1): 41-56. | |
[11] | WANG Fahui, HU Yujie, WANG Shuai, et al. Local indicator of colocation quotient with a statistical significance test: examining spatial association of crime and facilities[J]. The Professional Geographer, 2017, 69(1): 22-31. |
[12] | ZHU Di, HUANG Zhou, SHI Li, et al. Inferring spatial interaction patterns from sequential snapshots of spatial distributions [J]. International Journal of Geographical Information Science, 2018, 32(4): 783-805. |
[13] | 刘瑜, 姚欣, 龚咏喜, 等. 大数据时代的空间交互分析方法和应用再论 [J]. 地理学报, 2020, 75(7): 1523-1538. |
LIU Yu, YAO Xin, GONG Yongxi, et al. Analytical methods and applications of spatial interactions in the era of big data [J]. Acta Geographica Sinica, 2020, 75(7): 1523-1538. | |
[14] | HUANG B, WU B, BARRY M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices [J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401. |
[15] | DU Z H, WU S S, KWAN M P, et al. A spatiotemporal regression-kriging model for space-time interpolation: a case study of chlorophyll-a prediction in the coastal areas of Zhejiang, China[J]. International Journal of Geographical Information Science, 2018, 32(10): 1927-1947. |
[16] | LYNCH H J, MOORCROFT P R. A spatiotemporal Ripley's K-function to analyze interactions between spruce budworm and fire in British Columbia, Canada[J]. Canadian Journal of Forest Research, 2008, 38(12): 3112-3119. |
[17] | LI L, CHENG J Q, BANNISTER J, et al. Geographically and temporally weighted co-location quotient: an analysis of spatiotemporal crime patterns in greater Manchester[J]. International Journal of Geographical Information Science, 2022, 36(5): 918-942. |
[18] | MA Xinwei, JI Yanjie, YUAN Yufei, et al. A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data[J]. Transportation Research Part A: Policy and Practice, 2020, 139: 148-173. |
[19] | CAI J N, KWAN M P. Detecting spatial flow outliers in the presence of spatial autocorrelation [J]. Computers, Environment and Urban Systems, 2022, 96: 101833. |
[20] | 秦昆, 喻雪松, 周扬, 等. 全球尺度地理多元流的网络化挖掘及关联分析研究 [J]. 地球信息科学学报, 2022, 24(10): 1911-1924. |
QIN Kun, YU Xuesong, ZHOU Yang, et al. Networked mining and association analysis of geographical multiple flows at a global scale[J]. Journal of Geo-information Science, 2022, 24(10): 1911-1924. | |
[21] | MORAN P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1/2): 17-23. |
[22] | GETIS A. Spatial filtering in a regression framework: examples using data on urban crime, regional inequality, and government expenditures[M]//New directions in spatial econometrics. Berlin: Springer. 1995: 172-185. |
[23] | GETIS A, ORD J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992, 24(3): 189-206. |
[24] | BERGLUND S, KARLSTRÖM A. Identifying local spatial association in flow data[J]. Journal of Geographical Systems, 1999, 1(3): 219-236. |
[25] | BLACK W R. Network autocorrelation in transport network and flow systems[J]. Geographical Analysis, 1992, 24(3): 207-222. |
[26] | LIU Yu, TONG Daoqin, LIU Xi. Measuring spatial autocorrelation of vectors[J]. Geographical Analysis, 2015, 47(3): 300-319. |
[27] | KAN Z H, KWAN M P, TANG L L. Ripley's K-function for network-constrained flow data[J]. Geographical Analysis, 2022, 54(4): 769-788. |
[28] | TAO R, THILL J C. Spatial cluster detection in spatial flow data[J]. Geographical Analysis, 2016, 48(4): 355-372. |
[29] | GAO Yizhao, LI Ting, WANG Shaowen, et al. A multidimensional spatial scan statistics approach to movement pattern comparison[J]. International Journal of Geographical Information Science, 2018, 32(7): 1304-1325. |
[30] | TAO R, THILL J C. BiFlowLISA: measuring spatial association for bivariate flow data[J]. Computers Environment and Urban Systems, 2020, 83: 101519. |
[31] | ZHOU Mengjie, YANG Mengjie, CHEN Zhe. Flow colocation quotient: measuring bivariate spatial association for flow data[J]. Computers, Environment and Urban Systems, 2023, 99: 101916. |
[32] | YAO Xin, ZHU Di, GAO Yong, et al. A stepwise spatio-temporal flow clustering method for discovering mobility trends[J]. IEEE Access, 2018, 6: 44666-44675. |
[33] | 刘大有, 陈慧灵, 齐红, 等. 时空数据挖掘研究进展 [J]. 计算机研究与发展, 2013, 50(2): 225-239. |
LIU Dayou, CHEN Huiling, QI Hong, et al. Advances in spatiotemporal data mining[J]. Journal of Computer Research and Development, 2013, 50(2): 225-239. | |
[34] | WU Yingcai, WENG Di, DENG Zikun, et al. Towards better detection and analysis of massive spatiotemporal co-occurrence patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3387-3402. |
[35] | YONGMEI Z, SHA G, KUO X, et al. Mining algorithm of spatial-temporal co-occurrence pattern based on vehicle GPS trajectory[C]//Proceedings of 2016 IEEE International Conference on Signal and Image Processing. Beijing: IEEE, 2016. |
[36] | YU Wenhao. Discovering frequent movement paths from taxi trajectory data using spatially embedded networks and association rules[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 855-866. |
[37] | YAN Xiaorui, PEI Tao, SHU Hua, et al. Spatiotemporal flow L-function: a new method for identifying spatiotemporal clusters in geographical flow data[J]. International Journal of Geographical Information Science, 2023, 37(7): 1615-1639. |
[38] | SHEKHAR S, JIANG Z, ALI R, et al. Spatiotemporal data mining: a computational perspective[J]. ISPRS International Journal of Geo-Information, 2015, 4(4): 2306-2338. |
[39] | RIPLEY B D. The second-order analysis of stationary point processes[J]. Journal of Applied probability, 1976, 13(2): 255-266. |
[40] | RIPLEY B D. Modelling spatial patterns[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(2): 172-192. |
[41] | DIGGLE P J. Statistical analysis of spatial and spatio-temporal point patterns[M]. Boca Raton: CRC press, 2013. |
[42] | WANG D, MIWA T, MORIKAWA T. Interrelationships between traditional taxi services and online ride-hailing: empirical evidence from Xiamen, China[J]. Sustainable Cities and Society, 2022, 83: 103924. |
[1] | YE Haoyu, TU Wei, YE Hehui, MAI Ke, ZHAO Tianhong, LI Qingquan. Deep reinforcement learning based electric taxi service optimization [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1630-1639. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||