Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (8): 1634-1643.doi: 10.11947/j.AGCS.2024.20230580
• Cartography and Geoinformation • Previous Articles Next Articles
Pengcheng LIU1,2(), Hongran MA1,2, Yang ZHOU1,2, Ziqin SHAO1,2
Received:
2023-12-19
Published:
2024-09-25
About author:
LIU Pengcheng (1968—), male, PhD, professor, majors in map generalization, spatial pattern recognition and GeoAI. E-mail: liupc@ccnu.edu.cn
Supported by:
CLC Number:
Pengcheng LIU, Hongran MA, Yang ZHOU, Ziqin SHAO. Autoencoder neural network method for curve data compression[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1634-1643.
[1] | DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: the International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112-122. |
[2] | NAKOS B, MITROPOULOS V. Local length ratio as a measure of critical points detection for line simplification[C]//Proceedings of the 5th Workshop on Progress in Automated Map Generalization. Paris: IEEE, 2003. |
[3] | SAALFELD A. Topologically consistent line simplification with the Douglas-Peucker algorithm[J]. Cartography and Geographic Information Science, 1999, 26(1): 7-18. |
[4] | LI Zhilin, OPENSHAW S. Algorithms for automated line generalization on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5): 373-389. |
[5] | 朱鲲鹏, 武芳, 王辉连, 等. Li-Openshaw算法的改进与评价[J]. 测绘学报, 2007, 36(4): 450-456. |
ZHU Kunpeng, WU Fang, WANG Huilian, et al. Improvement and assessment of Li-openshaw algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4): 450-456. | |
[6] | VISVALINGAM M, WHYATT J D. Line generalization by repeated elimination of points[M]//Landmarks in Mapping. Oxford: Routledge, 2017: 144-155. |
[7] | WANG Zeshen, MÜLLER J C. Line generalization based on analysis of shape characteristics[J]. Cartography and Geographic Information Systems, 1998, 25(1): 3-15. |
[8] | 顾腾, 陈晓勇, 刘成强. 一种Douglas-Peucker与Li-Openshaw结合改进的曲线化简方法[J]. 东华理工大学学报(自然科学版), 2016, 39(4): 396-400. |
GU Teng, CHEN Xiaoyong, LIU Chengqiang. A modified line simplification method combined Douglas-Peucker with Li-Openshaw[J]. Journal of East China University of Technology (Natural Science), 2016, 39(4): 396-400. | |
[9] | 李成名, 郭沛沛, 殷勇, 等. 一种顾及空间关系约束的线化简算法[J]. 测绘学报, 2017, 46(4): 498-506. DOI: 10.11947/j.AGCS.2017.20160546. |
LI Chengming, GUO Peipei, YIN Yong, et al. A line simplification algorithm considering spatial relations between two lines[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4): 498-506. DOI: 10.11947/j.AGCS.2017.20160546. | |
[10] | LI Juncheng, ZHAO Dongbiao. An investigation on image compression using the trigonometric Bézier curve with a shape parameter[J]. Mathematical Problems in Engineering, 2013: 731648. |
[11] | SARFRAZ M, ASIM M R, MASOOD A. Capturing outlines using cubic Bezier curves[C]//Proceedings of 2004 International Conference on Information and Communication Technologies: From Theory to Applications. Damascus: IEEE, 2004: 539-540. |
[12] | LIU Pengcheng, LI Xingong, LIU Weibo, et al. Fourier-based multi-scale representation and progressive transmission of cartographic curves on the Internet[J]. Cartography and Geographic Information Science, 2016, 43(5): 454-468. |
[13] | LIU Pengcheng, XIAO Tianyuan, XIAO Jia, et al. A multi-scale representation model of polyline based on head/tail breaks[J]. International Journal of Geographical Information Science, 2020, 34(11): 2275-2295. |
[14] | 吴凡. 基于小波分析的线状特征数据无级表达[J]. 武汉大学学报(信息科学版), 2004, 29(6): 488-491. |
WU Fan. Scaleless representations for polyline spatial data based on wavelet analysis[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 488-491. | |
[15] | 吴凡, 祝国瑞. 基于小波分析的地貌多尺度表达与自动综合[J]. 武汉大学学报(信息科学版), 2001, 26(2): 170-176. |
WU Fan, ZHU Guorui. Multi-scale representation and automatic generalization of relief based on wavelet analysis[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 170-176. | |
[16] | ZHOU Qi, LI Zhilin. Use of artificial neural networks for selective omission in updating road networks[J]. The Cartographic Journal, 2014, 51(1): 38-51. |
[17] | ZHOU Qi, LI Zhilin. A comparative study of various supervised learning approaches to selective omission in a road network[J]. The Cartographic Journal, 2017, 54(3): 254-264. |
[18] | DU Jiawei, WU Fang, YIN Jichong, et al. Polyline simplification based on the artificial neural network with constraints of generalization knowledge[J]. Cartography and Geographic Information Science, 2022, 49(4): 313-337. |
[19] | JIANG Baode, XU Shaofen, LI Zhiwei. Polyline simplification using a region proposal network integrating raster and vector features[J]. GIScience & Remote Sensing, 2023, 60(1): 2275427. |
[20] | COURTIAL A, EL AYEDI A, TOUYA G, et al. Exploring the potential of deep learning segmentation for mountain roads generalisation[J]. ISPRS International Journal of Geo-Information, 2020, 9(5): 338. |
[21] | DU Jiawei, WU Fang, XING Ruixing, et al. Segmentation and sampling method for complex polyline generalization based on a generative adversarial network[J]. Geocarto International, 2022, 37(14): 4158-4180. |
[22] | YU Wenhao, CHEN Yujie. Data-driven polyline simplification using a stacked autoencoder-based deep neural network[J]. Transactions in GIS, 2022, 26(5): 2302-2325. |
[23] | YAN Xiongfeng, YANG Min. A deep learning approach for polyline and building simplification based on graph autoencoder with flexible constraints[J]. Cartography and Geographic Information Science, 2024, 51(1): 79-96. |
[24] | TONG Xiaohua, ZHOU Lejingyi, JIN Yanmin. Positional error model of line segments with modeling and measuring errors using brownian bridge[J]. Journal of Geodesy & Geoinformation Science, 2023, 6(2): 1-10. |
[25] | QIAN Haizhong, ZHANG Meng, WU Fang. A new simplification approach based on the oblique-dividing-curve method for contour lines[J]. ISPRS International Journal of Geo-Information, 2016, 5(9): 153. |
[26] | SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[J]. Advances in neural information processing systems, 2018, 31(1): 2483-2493. |
[1] | XIAO Tianyuan, AI Tinghua, YU Huafei, YANG Min, LIU Pengcheng. A point cluster simplification approach of graph convolutional neural network for map generalization [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 158-172. |
[2] | AN Xiaoya, ZHU Yude, YAN Xiongfeng. A building selection method supported by graph convolutional network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1574-1583. |
[3] | ZHANG Xingang, YAN Haowen. Relationship between scale change and median Hausdorff distance of river elements [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(8): 1364-1374. |
[4] | DU Qian, XIE Weiying. Adversarial autoencoder for hyperspectral anomaly detection [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1105-1114. |
[5] | SONG Shangzhen, YANG Yixin, WANG Huifeng, WANG Xiaoyan, RONG Shenghui, ZHOU Huixin. Hyperspectral anomaly detection combining sparse constraint and feature extraction via stacked autoencoder [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 932-943. |
[6] | JIANG Baode, XU Shaofen, WU Yong, WANG Miao. Automatic vector polyline simplification based on region proposal network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2209-2222. |
[7] | ZHANG Xinchang, HE Xianjin, SUN Ying, HUANG Jianfeng, ZHANG Zhiqiang. Advance and future development of the multi-scale spatial data linkage updating [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1520-1535. |
[8] | WU Fang, DU Jiawei, WU Fanghua. A survey of the research progress in automated generalization of submarine terrain data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1588-1605. |
[9] | AI Tinghua, ZHANG Xiang. An interpretation and representation of scale concept in geo-information sciences [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1640-1652. |
[10] | DU Jiawei, WU Fang, ZHU Li, LIU Chengyi, WANG Andong. An ensemble learning simplification approach based on multiple machine-learning algorithms with the fusion using of raster and vector data and a use case of coastline simplification [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 373-387. |
[11] | YAN Xiongfeng, YUAN Tuo, YANG Min, KONG Bo, LIU Pengcheng. An adaptive building simplification approach based on shape analysis and representation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2): 269-278. |
[12] | GAO Xiaorong, YAN Haowen, LU Xiaomin. Semantic similarity measurement for building polygon aggregation in multi-scale map space [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 95-103. |
[13] | LIU Yuangang, LI Shaohua, CAI Yongxiang, HE Zhenming, MA Xiaoya, LI Pengcheng, GUO Qingsheng, HE Zongyi. An immune genetic algorithm to buildings displacement with constraint of safety zones [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 812-822. |
[14] | LIU Huimin, HU Wenke, TANG Jianbo, SHI Yan, DENG Min. A method for recognizing building clusters by considering functional features of buildings [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 622-631. |
[15] | AN Xiaoya, CHENG Xiaoqiang. Visual clarity of vector curve and its application in web map generalization [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 245-255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||