Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (10): 2021-2033.doi: 10.11947/j.AGCS.2024.20230571.
• Cartography and Geoinformation • Previous Articles
Jia LI1,(), Jing LI1, Haiyan LIU1(), Chuanwei LU1, Xiaohui CHEN1, Junnan LIU2, Wen SHI3
Received:
2023-12-13
Published:
2024-11-26
Contact:
Haiyan LIU
E-mail:lijia_kk@163.com;liuharry2020@163.com
About author:
LI Jia (1996—), female, PhD candidate, majors in spatio temporal intelligent prediction. E-mail: lijia_kk@163.com
Supported by:
CLC Number:
Jia LI, Jing LI, Haiyan LIU, Chuanwei LU, Xiaohui CHEN, Junnan LIU, Wen SHI. Trajectory prediction enhanced by geographic knowledge graph and multi-spatio temporal constraints[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 2021-2033.
Tab.4
Accuracy comparison with different representation learning methods"
表示学习方法 | 约束条件 | HR@1 | HR@5 | HR@10 | HR@20 | MRR |
---|---|---|---|---|---|---|
One-hot | Transformer | 13.43 | 28.10 | 32.45 | 35.73 | 19.56 |
Word2vec | 13.48 | 29.42 | 33.52 | 36.68 | 20.95 | |
Geohash | 19.47 | 40.07 | 46.69 | 50.62 | 29.19 | |
TransE | 22.38 | 40.97 | 48.27 | 53.08 | 31.05 | |
TransR | 23.82 | 43.24 | 49.22 | 53.43 | 32.41 | |
One-hot | Transformer+ | 15.59 | 29.21 | 33.91 | 37.43 | 21.90 |
Word2vec | 16.66 | 31.41 | 35.78 | 40.40 | 23.41 | |
Geohash | 20.34 | 41.37 | 47.89 | 52.16 | 29.78 | |
TransE | 22.72 | 42.01 | 48.92 | 53.87 | 31.81 | |
TransR | 24.66 | 44.17 | 50.44 | 55.44 | 33.51 |
[1] | BARABÁSI A L. The origin of bursts and heavy tails in human dynamics[J]. Nature, 2005, 435(7039):207-211. |
[2] | BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature, 2006, 439(7075):462-465. |
[3] | SONG Chaoming, QU Zehui, BLUMM N, et al. Limits of predictability in human mobility[J]. Science, 2010, 327(5968):1018-1021. |
[4] |
李静, 刘海砚, 郭文月, 等. 基于深度学习的人群活动流量时空预测模型[J]. 测绘学报, 2021, 50(4):522-531. DOI:.
doi: 10.11947/j.AGCS.2021.20200230 |
LI Jing, LIU Haiyan, GUO Wenyue, et al. A spatio-temporal network for human activity prediction based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4):522-531. DOI:.
doi: 10.11947/j.AGCS.2021.20200230 |
|
[5] | ZHANG Junbo, ZHENG Yu, QI Dekang. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of 2017 AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 1655-1661. |
[6] | 郭旦怀, 张鸣珂, 贾楠, 等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版), 2020, 45(12):1890-1902. |
GUO Danhuai, ZHANG Mingke, JIA Nan, et al. Survey of point-of-interest recommendation research fused with deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12):1890-1902. | |
[7] | ZHANG Jiawei, QI Hua. Data mining and spatial analysis of social media text based on the BERT-CNN model to achieve situational awareness: a case study of COVID-19[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2):38-48. |
[8] | HE Zhengbing, QI Geqi, LU Lili, et al. Network-wide identification of turn-level intersection congestion using only low-frequency probe vehicle data[J]. Transportation Research Part C: Emerging Technologies, 2019, 108:320-339. |
[9] | 朱秋圳, 邬群勇, 姚铖鑫, 等. 基于DBI和稀疏轨迹数据的交通状态精细划分与识别[J]. 地球信息科学学报, 2022, 24(3):458-468. |
ZHU Qiuzhen, WU Qunyong, YAO Chengxin, et al. Fine classification and identification of traffic states based on DBI and sparse tra-jectory data[J]. Journal of Geo-information Science, 2022, 24(3):458-468. | |
[10] | CHENG Chen, YANG Haiqin, KING I, et al. Fused matrix factorization with geographical and social influence in location-based social networks[C]//Proceedings of 2012 AAAI Conference on Artificial Intelligence. Toronto: AAAI Press, 2012: 17-23. |
[11] | GIANNOTTI F, NANNI M, PINELLI F, et al. Trajectory pattern mining[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose: ACM Press, 2007: 330-339. |
[12] | MATHEW W, RAPOSO R, MARTINS B. Predicting future locations with hidden Markov models[C]//Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York: ACM Press, 2012: 911-918. |
[13] | YE Jihang, ZHU Zhe, CHENG Hong. What's your next move: user activity prediction in location-based social networks[C]//Procee-dings of 2013 SIAM International Conference on Data Mining. Philadelphia: Society for Industrial and Applied Mathematics, 2013: 171-179. |
[14] | ZHANG Jiadong, CHOW C Y, LI Yanhua. LORE: exploiting sequential influence for location recommendations[C]//Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Dallas: ACM Press, 2014: 103-112. |
[15] | LIU Qiang, WU Shu, WANG Liang, et al. Predicting the next location: a recurrent model with spatial and temporal contexts[C]//Proceedings of 2016 AAAI Conference on Artificial Intelligence. Phoenix: AAAI Press, 2016. |
[16] | SUN Ke, QIAN Tieyun, CHEN Tong, et al. Where to go next: modeling long- and short-term user preferences for point-of-interest recommendation[C]//Proceedings of 2020 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 214-221. |
[17] | WU Yuxia, LI Ke, ZHAO Guoshuai, et al. Personalized long- and short-term preference learning for next POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4):1944-1957. |
[18] | FENG Jie, LI Yong, ZHANG Chao, et al. DeepMove: predicting human mobility with attentional recurrent networks[C]//Proceedings of 2018 World Wide Web Conference on World Wide Web. Lyon: ACM Press, 2018: 1459-1468. |
[19] | ZHAO Pengpeng, LUO Anjing, LIU Yanchi, et al. Where to go next: a spatio-temporal gated network for next POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5):2512-2524. |
[20] | YANG Song, LIU Jiamou, ZHAO Kaiqi. GETNext: trajectory flow map enhanced transformer for next POI recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM Press, 2022: 1144-1153. |
[21] |
刘纪平, 张志然, 杨超伟, 等. 城市街区和签到数据结合的个性化城市兴趣区域推荐方法[J]. 测绘学报, 2022, 51(8):1797-1806. DOI:.
doi: 10.11947/j.AGCS.2022.20210094 |
LIU Jiping, ZHANG Zhiran, YANG Chaowei, et al. Personalized city region of interests recommendation method based on city block and check-in data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8):1797-1806. DOI:.
doi: 10.11947/j.AGCS.2022.20210094 |
|
[22] |
段晓旗, 张彤, 田有亮, 等. 居民出行异质性与城市活动结构[J]. 测绘学报, 2023, 52(1):155-166. DOI:.
doi: 10.11947/j.AGCS.2023.20210368 |
DUAN Xiaoqi, ZHANG Tong, TIAN Youliang, et al. Residents' travel heterogeneity and urban mobility structure[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1):155-166. DOI:.
doi: 10.11947/j.AGCS.2023.20210368 |
|
[23] | BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828. |
[24] | 曹翰林, 唐海娜, 王飞, 等. 轨迹表示学习技术研究进展[J]. 软件学报, 2021, 32(5):1461-1479. |
CAO Hanlin, TANG Haina, WANG Fei, et al. Survey on trajectory representation learning techniques[J]. Journal of Software, 2021, 32(5):1461-1479. | |
[25] | LIU Xin, LIU Yong, LI Xiaoli. Exploring the context of locations for personalized location recommendations[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 1188-1194. |
[26] | YAN Bo, JANOWICZ K, MAI Gengchen, et al. From ITDL to Place2Vec: reasoning about place type similarity and relatedness by learning embeddings from augmented spatial contexts[C]//Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Redondo Beach: ACM Press, 2017: 1-10. |
[27] | FENG Shanshan, CONG Gao, AN Bo, et al. POI2Vec: geographical latent representation for predicting future visitors[C]//Procee-dings of the 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 102-108. |
[28] | YUAN Quan, CONG Gao, SUN Aixin. Graph-based point-of-interest recommendation with geographical and temporal influences[C]//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. Shanghai: ACM Press, 2014: 659-668. |
[29] | 刘真, 王娜娜, 王晓东, 等. 位置社交网络中谱嵌入增强的兴趣点推荐算法[J]. 通信学报, 2020, 41(3):197-206. |
LIU Zhen, WANG Nana, WANG Xiaodong, et al. Spectral clustering and embedding-enhanced POI recommendation in location-based social network[J]. Journal on Communications, 2020, 41(3):197-206. | |
[30] | LI Yang, CHEN Tong, LUO Yadan, et al. Discovering collaborative signals for next POI recommendation with iterative Seq2Graph augmentation[C]//Proceedings of 2021 International Joint Conference on Artificial Intelligence. Montreal: International Joint Conferences on Artificial Intelligence Organization, 2021. |
[31] | XIE Min, YIN Hongzhi, WANG Hao, et al. Learning graph-based POI embedding for location-based recommendation[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. Indianapolis: ACM Press, 2016: 15-24. |
[32] |
方金凤, 孟祥福. 基于LBSN和多图融合的兴趣点推荐[J]. 测绘学报, 2022, 51(5):739-749. DOI:.
doi: 10.11947/j.AGCS.2022.20210156 |
FANG Jinfeng, MENG Xiangfu. POI recommendation based on LBSN and multi-graph fusion[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5):739-749. DOI:.
doi: 10.11947/j.AGCS.2022.20210156 |
|
[33] | QIN Yifang, WANG Yifan, SUN Fang, et al. DisenPOI: disentangling sequential and geographical influence for point-of-interest recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. Singapore: ACM Press, 2023: 508-516. |
[34] | QIN Yifang, WU Hongjun, JU Wei, et al. A diffusion model for POI recommendation[J]. ACM Transactions on Information Systems, 2024, 42(2):1-27. |
[35] | 陆锋, 余丽, 仇培元. 论地理知识图谱[J]. 地球信息科学学报, 2017, 19(6):723-734. |
LU Feng, YU Li, QIU Peiyuan. On geographic knowledge graph[J]. Journal of Geo-Information Science, 2017, 19(6):723-734. | |
[36] | 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2):247-261. |
LIU Zhiyuan, SUN Maosong, LIN Yankai, et al. Knowledge representation learning: a review[J]. Journal of Computer Research and Development, 2016, 53(2):247-261. | |
[37] | 刘俊楠, 刘海砚, 陈晓慧, 等. 基于地理空间数据的知识图谱构建技术研究[J]. 中文信息学报, 2020, 34(11):29-36. |
LIU Junnan, LIU Haiyan, CHEN Xiaohui, et al. Construction of knowledge graph based on geo-spatial data[J]. Journal of Chinese Information Processing, 2020, 34(11):29-36. | |
[38] | LI Jing, LIU Haiyan, LI Jia, et al. A knowledge-based approach for estimating the distribution of urban mixed land use[J]. International Journal of Digital Earth, 2023, 16(1):965-987. |
[39] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[40] | CURL J S. A dictionary of architecture and landscape architecture[M]. 2nd ed. Oxford: Oxford University Press, 2006. |
[41] | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 2787-2795. |
[42] | LIN Yankai, LIU Zhiyuan, SUN Maosong, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin: AAAI Press, 2015: 2181-2187. |
[43] | KAZEMI S M, GOEL R, EGHBALI S, et al. Time2Vec: learning a vector representation of time[EB/OL]. [2023-11-12]. https://arxiv.org/abs/1907.05321v. |
[44] | TANG Gongbo, MÜLLER M, RIOS A, et al. Why self-attention? A targeted evaluation of neural machine translation architectures[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018. |
[45] | YANG Dingqi, QU Bingqing, YANG Jie, et al. Revisiting user mobility and social relationships in LBSNs: a hypergraph embedding approach[C]//Proceedings of 2019 World Wide Web Conference. San Francisco: ACM Press, 2019: 2147-2157. |
[46] | HAKLAY M, WEBER P. OpenStreetMap: user-generated street maps[J]. IEEE Pervasive Computing, 2008, 7(4):12-18. |
[47] | CUI Qiang, ZHANG Chenrui, ZHANG Yafeng, et al. ST-PIL: spatial-temporal periodic interest learning for next point-of-interest recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland: ACM Press, 2021: 2960-2964. |
[1] | CAO Xingwen, ZHENG Hongwei, LIU Ying, WU Mengquan, WANG Lingyue, BAO Anming, CHEN Xi. Multi-pedestrian trajectory prediction method based on multi-view 3D simulation video learning [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(9): 1595-1608. |
[2] | TANG Luliang, DAI Ling, REN Chang, ZHANG Xia. Spatio-temporal modeling of city events combining datasets in cyberspace and real space [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5): 618-629. |
[3] | JIANG Bingchuan, WAN Gang, XU Jian, LI Feng, WEN Huiqi. Geographic Knowledge Graph Building Extracted from Multi-sourced Heterogeneous Data [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1051-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||