Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (10): 1942-1954.doi: 10.11947/j.AGCS.2024.20240019.
• Remote Sensing Large Model • Previous Articles
Yongjun ZHANG1,(), Yansheng LI1(), Bo DANG1, Kang WU1, Xin GUO2, Jian WANG2, Jingdong CHEN2, Ming YANG2
Received:
2024-01-12
Published:
2024-11-26
Contact:
Yansheng LI
E-mail:zhangyj@whu.edu.cn;yansheng.li@whu.edu.cn
About author:
ZHANG Yongjun (1975—), male, PhD, professor, majors in aerospace photogrammetry and remote sensing intelligent interpretation. E-mail: zhangyj@whu.edu.cn
Supported by:
CLC Number:
Yongjun ZHANG, Yansheng LI, Bo DANG, Kang WU, Xin GUO, Jian WANG, Jingdong CHEN, Ming YANG. Multi-modal remote sensing large foundation models: current research status and future prospect[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1942-1954.
Tab.1
Large-scale remote sensing vision pre-training datasets"
数据集 | 图像数量 | 图像大小/像素 | 空间分辨率/m | 图像类型 | 图像数据源 | 覆盖地理位置 |
---|---|---|---|---|---|---|
fMoW[ | 1 047 691 | — | — | 多光谱(4/8波段) | Digital Globe | 全球 |
SEN12MS[ | 180 662 | 256 | 10 | 合成孔径雷达-多光谱 | 哨兵1号、哨兵2号 | 全球 |
BigEarthNet-MM[ | 1 180 652 | 20~120 | 10~60 | 合成孔径雷达-多光谱 | 哨兵1号、哨兵2号 | 欧洲 |
MillionAID[ | 1 000 848 | 110~31 672 | 0.5~153 | 可见光 | Google Earth | — |
SeCo[ | 1 000 000 | — | 10 | 多光谱 | 哨兵2号 | 全球 |
fMoW-Sentinel[ | 882 779 | 45~60 | 10 | 多光谱(13波段) | 哨兵2号 | 全球 |
TOV-RS-Balanced[ | 500 000 | 600 | 1~20 | 可见光 | Google Earth | - |
SSL4EO-S12[ | 3 012 948 | 20~120 | 10~60 | 合成孔径雷达-多光谱 | 哨兵1号、哨兵2号 | 全球 |
SSL4EO-L[ | 5 000 000 | 264 | 30 | 多光谱 | Landsat4-5,7-9 | 全球 |
SatlasPretrain[ | 856 000 | 512 | 0.5~2,10 | 可见光&多光谱 | NAIP、哨兵2号 | 全球 |
Tab.2
Large-scale remote sensing vision-language pre-training datasets"
数据集 | 数量 | 属性 |
---|---|---|
RSICD[ | 24 333个文本描述、10 921张遥感影像 | 图像-文本描述 |
RSITMD[ | 23 715个文本描述、4743张遥感影像 | 图像-文本描述 |
RSVGD[ | 38 320个语言表达、17 402张遥感影像 | 视觉定位 |
RS5M[ | 500万个图像文本对 | 图像-文本描述 |
RSICap[ | 2585个图像文本对 | 图像-文本描述 |
文献[ | 828 725个图像文本对 | 图像-文本描述 |
文献[ | 318 000个图像指令提示对 | 图像-文本描述、定位描述、区域描述、复杂对话 |
[1] | 付琨, 卢宛萱, 刘小煜, 等. 遥感基础模型发展综述与未来设想[J]. 遥感学报, 2024, 28(7):1667-1680. |
FU Kun, LU Wanxuan, LIU Xiaoyu, et al. A comprehensive survey and assumption of remote sensing foundation modal[J]. National Remote Sensing Bulletin, 2024, 28(7):1667-1680. | |
[2] | LI Yansheng, CHEN Wei, HUANG Xin, et al. MFVNet: a deep adaptive fusion network with multiple field-of-views for remote sen-sing image semantic segmentation[J]. Science China Information Sciences, 2023, 66(4):140305. |
[3] | LI Yansheng, DANG Bo, ZHANG Yongjun, et al. Water body classification from high-resolution optical remote sensing imagery: achievements and perspectives[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187:306-327. |
[4] | LI Yansheng, WEI Fanyi, ZHANG Yongjun, et al. HS2P: Hierarchical spectral and structure-preserving fusion network for multimodal remote sensing image cloud and shadow removal[J]. Information Fusion, 2023, 94:215-228. |
[5] | PENG Daifeng, ZHAI Chenchen, ZHANG Yongjun, et al. High-resolution optical remote sensing image change detection based on dense connection and attention feature fusion network[J]. The Photogrammetric Record, 2023, 38(184):498-519. |
[6] | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]. [2024-01-05]. https://arxiv.org/pdf/2103.00020. |
[7] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[EB/OL]. [2024-01-05]. https://arxiv.org/pdf/2304.02643. |
[8] | YANG Zhengyuan, LI Linjie, LIN K, et al. The dawn of LMMs: preliminary explorations with GPT-4V (ision)[EB/OL]. [2024-01-05]. https://arxiv.org/pdf/2309.17421. |
[9] | 张良培, 张乐飞, 袁强强. 遥感大模型:进展与前瞻[J]. 武汉大学学报(信息科学版), 2023, 48(10):1574-1581. |
ZHANG Liangpei, ZHANG Lefei, YUAN Qiangqiang. Large remote sensing model: progress and prospects[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10):1574-1581. | |
[10] | JIAO Licheng, HUANG Zhongjian, LU Xiaoqiang, et al. Brain-inspired remote sensing foundation models and open problems: a comprehensive survey[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16:10084-10120. |
[11] | LI Xiang, WEN Congcong, HU Yuan, et al. Vision-language models in remote sensing: current progress and future trends[EB/OL]. [EB/OL]. [2024-01-05]. https://arxiv.org/abs/2305.05726. |
[12] | MANAS O, LACOSTE A, GIRO-I-NIETO X, et al. Seasonal contrast: unsupervised pre-training from uncurated remote sensing data[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9414-9423. |
[13] | MALL U, HARIHARAN B, BALA K. Change-aware sampling and contrastive learning for satellite images[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 5261-5270. |
[14] | KLEMMER K, ROLF E, ROBINSON C, et al. SatCLIP: global, general-purpose location embeddings with satellite imagery[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2311.17179. |
[15] | LI Wenyuan, CHEN Keyan, CHEN Hao, et al. Geographical knowledge-driven representation learning for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5405516. |
[16] | LI Wenyuan, CHEN Keyan, SHI Zhenwei. Geographical supervision correction for remote sensing representation learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5411520. |
[17] | WANG Yi, HERNÁNDEZ H H, ALBRECHT C, et al. Feature guided masked autoencoder for self-supervised learning in remote sensing[EB/OL]. [2024-01-05]. https://arxiv.org/pdf/2310.18653. |
[18] | GUO Xin, LAO Jiangwei, DANG Bo, et al. SkySense: a multi-modal remote sensing foundation model towards universal interpretation for earth observation imagery[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 27672-27683. |
[19] | TAO Chao, QI Ji, GUO Mingning, et al. Self-supervised remote sensing feature learning: learning paradigms, challenges, and future works[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5610426. |
[20] | TAO Chao, QI Ji, ZHANG Guo, et al. TOV: The original vision model for optical remote sensing image understanding via self-supervised learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16:4916-4930. |
[21] | MUHTAR D, ZHANG Xueliang, XIAO Pengfeng, et al. CMID: a unified self-supervised learning framework for remote sensing image understanding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5607817. |
[22] | LONG Yang, XIA Guisong, LI Shengyang, et al. On creating benchmark dataset for aerial image interpretation: reviews, guidances, and million-AID[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:4205-4230. |
[23] | BASTANI F, WOLTERS P, GUPTA R, et al. SatlasPretrain: a large-scale dataset for remote sensing image understanding[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2211.15660v3. |
[24] | CHRISTIE G, FENDLEY N, WILSON J, et al. Functional map of the world[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6172-6180. |
[25] | SUMBUL G, DE WALL A, KREUZIGER T, et al. BigEarthNet-MM: a large-scale, multimodal, multilabel benchmark archive for remote sensing image classification and retrieval [software and data sets][J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(3):174-180. |
[26] | WANG Yi, ALI BRAHAM N A, XIONG Zhitong, et al. SSL4EO-S12: a large-scale multimodal, multitemporal dataset for self-supervised learning in Earth observation [software and data sets][J]. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(3):98-106. |
[27] | SCHMITT M, HUGHES L H, QIU C, et al. SEN12MS—a curated dataset of georeferenced multi-spectral Sentinel-1/2 imagery for deep learning and data fusion[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 4:153-160. |
[28] | CONG Yezhen, KHANNA S, MENG Chenlin, et al. SatMAE: pre-training transformers for temporal and multi-spectral satellite imagery[J]. Advances in Neural Information Processing Systems, 2022, 35:197-211. |
[29] | STEWART A J, LEHMANN N, CORLEY I A, et al. SSL4EO-L: datasets and foundation models for landsat imagery[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2306.09424. |
[30] | LU Xiaoqiang, WANG Binqiang, ZHENG Xiangtao, et al. Exploring models and data for remote sensing image caption generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):2183-2195. |
[31] | YUAN Zhiqiang, ZHANG Wenkai, FU Kun, et al. Exploring a fine-grained multiscale method for cross-modal remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4404119. |
[32] | ZHAN Yang, XIONG Zhitong, YUAN Yuan. RSVG: exploring data and models for visual grounding on remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5604513. |
[33] | ZHANG Zilun, ZHAO Tiancheng, GUO Yulong, et al. RS5M: a large scale vision-language dataset for remote sensing vision-language foundation model[EB/OL]. [2024-01-05]. http://export.arxiv.org/abs/2306.11300v4. |
[34] | HU Yuan, YUAN Jianlong, WEN Congcong, et al. RSGPT: a remote sensing vision language model and benchmark[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2307.15266v1. |
[35] | LIU Fan, CHEN Delong, GUAN Z, et al. RemoteCLIP: a vision language foundation model for remote sensing[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2306.11029v4. |
[36] | KUCKREJA K, DANISH M S, NASEER M, et al. GeoChat: grounded large vision-language model for remote sensing[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2311.15826v1. |
[37] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[38] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[39] | CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9650-9660. |
[40] | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2002.05709v2. |
[41] | HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9729-9738. |
[42] | TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2302.13971v1. |
[43] | HE Kaiming, CHEN Xinlei, XIE Saining, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 16000-16009. |
[44] | BAO H, DONG L, PIAO S, et al. BEiT: BERT pre-training of image transformers[EB/OL]. [2024-01-05]. https://arxiv.org/pdf/2106.08254. |
[45] | PARK N, KIM W, HEO B, et al. What do self-supervised vision transformers learn?[EB/OL]. [2024-01-05]. https://arxiv.org/pdf/2305.00729. |
[46] | ZHOU Jinghao, WEI Chen, WANG Huiyu, et al. iBOT: image BERT pre-training with online tokenizer[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2111.07832v3. |
[47] | OQUAB M, DARCET T, MOUTAKANNI T, et al. DINOv2: learning robust visual features without supervision[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2304.07193v2. |
[48] | AYUSH K, UZKENT B, MENG Chenlin, et al. Geography-aware self-supervised learning[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10181-10190. |
[49] | AKIVA P, PURRI M, LEOTTA M. Self-supervised material and texture representation learning for remote sensing tasks[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 8203-8215. |
[50] | WANYAN Xinye, SENEVIRATNE S, SHEN Shuchang, et al. DINO-MC: self-supervised contrastive learning for remote sensing imagery with multi-sized local crops[EB/OL]. [2024-01-05]. https://ar5iv.labs.arxiv.org/html/2303.06670. |
[51] | ZHANG Hao, LI Feng, LIU Shilong, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2203.03605v4. |
[52] | CHA K, SEO J, LEE T. A billion-scale foundation model for remote sensing images[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2304.05215v4. |
[53] | WANG Yuelei, ZHANG Ting, ZHAO Liangjin, et al. RingMo-lite: a remote sensing multi-task lightweight network with CNN-transformer hybrid framework[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2309.09003v1. |
[54] | WANG Di, ZHANG Qiming, XU Yufei, et al. Advancing plain vision transformer toward remote sensing foundation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5607315. |
[55] | SUN Xian, WANG Peijin, LU Wanxuan, et al. RingMo: a remote sensing foundation model with masked image modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3194732. |
[56] | REED C J, GUPTA R, LI S, et al. Scale-MAE: a scale-aware masked autoencoder for multiscale geospatial representation learning[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 4088-4099. |
[57] | HONG D, ZHANG B, LI X, et al. SpectralGPT: spectral foundation modele[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2311.07113. |
[58] | JAKUBIK J, ROY S, PHILLIPS C E, et al. Foundation models for generalist geospatial artificial intelligence[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2310.18660v2. |
[59] | IRVIN J, TAO L, ZHOU J, et al. USat: a unified self-supervised encoder for multi-sensor satellite imagery[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2312.02199v1. |
[60] | MENDIETA M, HAN Boran, SHI Xingjian, et al. Towards geospatial foundation models via continual pretraining[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 16806-16816. |
[61] | TANG M, COZMA A L, GEORGIOU K, et al. Cross-scale MAE: a tale of multiscale exploitation in remote sensing[C]//Proceedings of the 37th Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023. |
[62] | ZHANG Mingming, LIU Qingjie, WANG Yunhong. CtxMIM: context-enhanced masked image modeling for remote sensing image understanding[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2310.00022v4. |
[63] | YAO Fanglong, LU Wanxuan, YANG Heming, et al. RingMo-sense: remote sensing foundation model for spatiotemporal prediction via spatiotemporal evolution disentangling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3316166. |
[64] | FULLER A, MILLARD K, GREEN J R. CROMA: remote sensing representations with contrastive radar-optical masked autoencoders[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2311.00566. |
[65] | WANG Yi, ALBRECHT C M, ALI BRAHAM N A, et al. Decoupling common and unique representations for multimodal self-supervised learning[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2309.05300v3. |
[66] | TSENG G, CARTUYVELS R, ZVONKOV I, et al. Lightweight, pre-trained transformers for remote sensing timeseries[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2304.14065v4. |
[67] | FENG Yingchao, WANG Peijin, DIAO Wenhui, et al. A self-supervised cross-modal remote sensing foundation model with multi-domain representation and cross-domain fusion[C]//Proceedings of 2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 2023: 2239-2242. |
[68] | ZHAO W X, ZHOU Kun, LI Junyi, et al. A survey of large language models[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2303.18223v14. |
[69] | ROBERTS J, LÜDDECKE T, SHEIKH R, et al. Charting new territories: exploring the geographic and geospatial capabilities of multimodal LLMs[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2311.14656v3. |
[70] | MALL U, PHOO C P, LIU M K, et al. Remote sensing vision-language foundation models without annotations via ground remote alignment[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2312.06960v1. |
[71] | LI Yansheng, WANG Linlin, WANG Tingzhu, et al. STAR: a first-ever dataset and a large-scale benchmark for scene graph generation in large-size satellite imagery[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2406.09410v3. |
[72] | LUO Junwei, PANG Zhen, ZHANG Yongjun, et al. SkySenseGPT: a fine-grained instruction tuning dataset and model for remote sensing vision-language understanding[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2406.10100v2. |
[73] | CEPEDA V V, NAYAK G K, SHAH M. GeoCLIP: clip-inspired alignment between locations and images for effective worldwide geo-localization[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2309.16020. |
[74] | MAI Gengchen, LAO Ni, HE Yutong, et al. CSP: self-supervised contrastive spatial pre-training for geospatial-visual representations[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2305.01118v2. |
[75] | WOLTERS P, BASTANI F, KEMBHAVI A. Zooming out on zooming in: advancing super-resolution for remote sensing[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2311.18082v1. |
[76] | KHANNA S, LIU P, ZHOU Linqi, et al. DiffusionSat: a generative foundation model for satellite imagery[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2312.03606v2. |
[77] | ESPINOSA M, CROWLEY E J. Generate your own Scotland: satellite image generation conditioned on maps[EB/OL]. [2024-01-05]. https://arxiv.org/abs/2308.16648v1. |
[78] |
李彦胜, 吴敏郎, 张永军. 知识图谱约束深度网络的高分辨率遥感影像场景分类[J]. 测绘学报, 2024, 53(4):677-688. DOI:.
doi: 10.11947/j.AGCS.2024.20230125 |
LI Yansheng, WU Minlang, ZHANG Yongjun. Knowledge graph-guided deep network for high-resolution remote sensing image scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4):677-688. DOI:.
doi: 10.11947/j.AGCS.2024.20230125 |
|
[79] | LI Yansheng, KONG Deyu, ZHANG Yongjun, et al. Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179:145-158. |
[80] | LI Yansheng, ZHU Zhihui, YU Jingang, et al. Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10590-10603. |
[81] | LI Yansheng, ZHOU Yuhan, ZHANG Yongjun, et al. DKDFN: domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186:170-189. |
[82] | LI Yansheng, OUYANG Song, ZHANG Yongjun. Combining deep learning and ontology reasoning for remote sensing image semantic segmentation[J]. Knowledge-Based Systems, 2022, 243:108469. |
[83] | LIU Xiaojian, ZHANG Yongjun, ZOU Huimin, et al. Multi-source knowledge graph reasoning for ocean oil spill detection from satellite SAR images[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116:103153. |
[84] | 李彦胜, 张永军. 耦合知识图谱和深度学习的新一代遥感影像解译范式[J]. 武汉大学学报(信息科学版), 2022, 47(8):1176-1190. |
LI Yansheng, ZHANG Yongjun. A new paradigm of remote sensing image interpretation by coupling knowledge graph and deep learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1176-1190. | |
[85] | 李彦胜, 武康, 欧阳松, 等. 地学知识图谱引导的遥感影像语义分割[J]. 遥感学报, 2024, 28(2):455-469. |
LI Yansheng, WU Kang, OUYANG Song, et al. Geographic knowledge graph-guided remote sensing image semantic segmentation[J]. National Remote Sensing Bulletin, 2024, 28(2):455-469. | |
[86] | CHEN Jun, CHEN Lijun, CHEN Fei, et al. Collaborative validation of GlobeLand30: methodology and practices[J]. Geo-spatial Information Science, 2021, 24(1):134-144. |
[87] | GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373. |
[88] | ZHANG Lümin, RAO Anyi, AGRAWALA M. Adding conditional control to text-to-image diffusion models[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 3836-3847. |
[89] | 龚健雅, 李彦胜. 定量遥感与机器学习能够融合吗?[J]. 地球科学, 2022, 47(10):3911-3912. |
GONG Jianya, LI Yansheng. Can quantitative remote sensing and machine learning be integrated?[J]. Earth Science, 2022, 47(10):3911-3912. | |
[90] | GOODCHILD M F. The validity and usefulness of laws in geographic information science and geography[J]. Annals of the Association of American Geographers, 2004, 94(2):300-303. |
[91] |
张兵, 杨晓梅, 高连如, 等. 遥感大数据智能解译的地理学认知模型与方法[J]. 测绘学报, 2022, 51(7):1398-1415. DOI:.
doi: 10.11947/j.AGCS.2022.20220279 |
ZHANG Bing, YANG Xiaomei, GAO Lianru, et al. Geo-cognitive models and methods for intelligent interpretation of remotely sensed big data[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1398-1415. DOI:.
doi: 10.11947/j.AGCS.2022.20220279 |
[1] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[2] | SHEN Li, XU Zhu, LI Zhilin, LIU Wanzeng, CUI Bingliang. From geographic information service to geographic knowledge service: research issues and development roadmap [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1194-1202. |
[3] | GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi. Status analysis and research of sample database for intelligent interpretation of remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013-1022. |
[4] | JIANG Bingchuan, WAN Gang, XU Jian, LI Feng, WEN Huiqi. Geographic Knowledge Graph Building Extracted from Multi-sourced Heterogeneous Data [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1051-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||