| [1] |
LI Jinghe, HE Zhanxiang, YANG Jun, et al. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain[J]. Acta Physica Sinica, 2019, 68(9): 090501.
|
| [2] |
杨必胜, 宗泽亮, 陈驰, 等. 车载探地雷达地下目标实时探测法[J]. 测绘学报, 2020, 49(7): 874-882. DOI: .
doi: 10.11947/j.AGCS.2020.20190293
|
|
YANG Bisheng, ZONG Zeliang, CHEN Chi, et al. Real time approach for underground objects detection from vehicle-borne ground penetrating radar[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 874-882. DOI: .
doi: 10.11947/j.AGCS.2020.20190293
|
| [3] |
王大为, 王召巴. 一种强噪声背景下微弱超声信号提取方法研究[J]. 物理学报, 2018, 67(21): 65-77.
|
|
WANG Dawei, WANG Zhaoba. Weak ultrasonic signal detection in strong noise[J]. Acta Physica Sinica, 2018, 67(21): 65-77.
|
| [4] |
张立国, 周正欧. 浅地层探地雷达回波倒相的自适应处理[J]. 电子科技大学学报, 2004, 33(5): 519-522.
|
|
ZHANG Liguo, ZHOU Zheng'ou. Selfadapting processing of the reflecting signal phase invertion of subsurface ground penetrating radar[J]. Journal of University of Electronic Science and Technology of China, 2004, 33(5): 519-522.
|
| [5] |
黄长军, 郭际明, 喻小东, 等. 干涉图EMD-自适应滤波去噪法[J]. 测绘学报, 2013, 42(5): 707-714.
|
|
HUANG Changjun, GUO Jiming, YU Xiaodong, et al. The study of interferogram denoising method based on EMD and adaptive filter[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 707-714.
|
| [6] |
ZOU Hailin, YANG Feng. Image denoising of ground penetrating radar based on wavelet scale space correlation[C]//Proceedings of the 1st International Workshop on Education Technology and Computer Science. Wuhan: IEEE, 2009: 499-503.
|
| [7] |
王昶, 张永生, 王旭, 等. 遥感影像条带噪声去除的小波变分法[J]. 测绘学报, 2019, 48(8): 1025-1037. DOI: .
doi: 10.11947/j.AGCS.2019.20180394
|
|
WANG Chang, ZHANG Yongsheng, WANG Xu, et al. Stripe noise removal of remote image based on wavelet variational method[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 1025-1037. DOI: .
doi: 10.11947/j.AGCS.2019.20180394
|
| [8] |
WANG Chang, ZHANG Yongsheng, WANG Xu, et al. An effective strip noise removal method for remote sensing image[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 72-85.
|
| [9] |
QU Xiaofei, ZHAO Weiwei, LONG En, et al. Removal of stripes in remote sensing images based on statistics combined with image enhancement[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 76-87.
|
| [10] |
XUE Shuqiang, YANG Yuanxi. Adjustment model and colored noise compensation of continuous observation system[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 39-45.
|
| [11] |
武曙光, 边少锋, 李厚朴, 等. 基于变分模态分解的GNSS高程时间序列时变信号提取[J]. 测绘学报, 2024, 53(1): 79-90. DOI: .
doi: 10.11947/j.AGCS.2024.20220673
|
|
WU Shuguang, BIAN Shaofeng, LI Houpu, et al. Extraction of time-varying signals from GNSS height time series by variational mode decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 79-90. DOI: .
doi: 10.11947/j.AGCS.2024.20220673
|
| [12] |
TEMLIOGLU E, ERER I. A novel convolutional autoencoder-based clutter removal method for buried threat detection in ground-penetrating radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 3098122.
|
| [13] |
YAN Qiuyu, ZHAO Wufan, HUANG Xiao, et al. Automated delineation of smallholder farm fields using fully convolutional networks and generative adversarial networks[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 10-22.
|
| [14] |
LIU Lei, CAO Ligang, LU Congde, et al. A denoising method based on cyclegan with attention mechanisms for improving the hidden distress features of pavement[J]. Scientific Reports, 2023, 13(1): 13910.
|
| [15] |
林皓, 肖建平, 刘志航, 等. 基于深度学习的铁路路基雷达检测信号中强干扰压制方法研究[J]. 地球物理学进展, 2023, 38(6): 2714-2723.
|
|
LIN Hao, XIAO Jianping, LIU Zhihang, et al. Clutters suppression in GPR signal for railway subgrade detection based on deep learning[J]. Progress in Geophysics, 2023, 38(6): 2714-2723.
|
| [16] |
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
|
| [17] |
ZHANG Kai, LI Yawei, ZUO Wangmeng, et al. Plug-and-play image restoration with deep denoiser prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6360-6376.
|
| [18] |
WU Y, HE K. Group normalization[C]//Proceedings of 2018 European Conference on Computer Vision. [S.l.]: IEEE, 2018: 3-19.
|
| [19] |
DONG Linhao, XU Shuang, XU Bo. Speech-Transformer: a no-recurrence sequence-to-sequence model for speech recognition[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary: IEEE, 2018: 5884-5888.
|
| [20] |
ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5718-5729.
|
| [21] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 1: e30.
|
| [22] |
ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of 2018 European conference on computer vision. Cham: Springer, 2018: 294-310.
|
| [23] |
NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. [S.l.]: IEEE, 2010.
|
| [24] |
YIN Xinyou, GOUDRIAAN J, LANTINGA E A, et al. A flexible sigmoid function of determinate growth[J]. Annals of Botany, 2003, 91(3): 361-371.
|
| [25] |
NI Sen, JIA Pengfei, XU Yang, et al. Prediction of CO concentration in different conditions based on Gaussian-TCN[J]. Sensors and Actuators B: Chemical, 2023, 376: 133010.
|
| [26] |
CHEN L, CHU X, ZHANG X, et al. Simple baselines for image restoration[C]//Proceedings of the 17th European Conference. Cham: Springer Nature Switzerland, 2022: 17-33.
|
| [27] |
WU Haiping, XIAO Bin, CODELLA N, et al. CvT: introducing convolutions to vision transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 22-31.
|
| [28] |
ZHANG Fengzhen, CEN Yigang, ZHAO Ruizhen, et al. Analytic separable dictionary learning based on oblique manifold[J]. Neurocomputing, 2017, 236: 32-38.
|