Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (5): 899-910.doi: 10.11947/j.AGCS.2025.20240142
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Maoteng ZHENG1,2(
), Yihui LU3, Junfeng ZHU4, Xiaoru ZENG4, Huanbin QIU5, Yuyao JIANG1, Xingyue LU1, Hao QU4, Nengcheng CHEN1(
)
Received:2024-04-10
Revised:2025-04-23
Online:2025-06-23
Published:2025-06-23
Contact:
Nengcheng CHEN
E-mail:tengve@163.com;cnc@whu.edu.cn
About author:ZHENG Maoteng (1987—), male, PhD, associate researcher, majors in theoretical methods and application research of aerospace photogrammetry and computer vision 3D reconstruction. E-mail: tengve@163.com
Supported by:CLC Number:
Maoteng ZHENG, Yihui LU, Junfeng ZHU, Xiaoru ZENG, Huanbin QIU, Yuyao JIANG, Xingyue LU, Hao QU, Nengcheng CHEN. Distributed bundle adjustment method for super large-scale datasets based on LM algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 899-910.
Tab. 1
Statistics for data sets"
| 数据集 | 数据来源 | 相机数 | 影像数 | 物方点数 | 像点数 | 稀疏度 |
|---|---|---|---|---|---|---|
| Ladybug-1723 | 公开数据[ | 1723 | 1723 | 156 502 | 678 718 | 0.040 2 |
| Venice-1778 | 公开数据[ | 1778 | 1778 | 993 923 | 5 001 946 | 0.082 5 |
| Final-13682 | 公开数据[ | 13 682 | 13 682 | 4 456 117 | 28 987 644 | 0.070 2 |
| SW-20975 | 无人机数据 | 5 | 20 975 | 31 150 569 | 166 980 328 | 0.004 2 |
| JLP-44975 | 无人机数据 | 5 | 44 975 | 44 379 729 | 228 467 901 | 0.002 1 |
| YQC-46405 | 无人机数据 | 5 | 46 405 | 38 862 849 | 254 234 253 | 0.002 1 |
| JZ-49345 | 无人机数据 | 5 | 49 345 | 41 617 959 | 218 489 728 | 0.001 4 |
| XS-61729 | 无人机数据 | 95 | 61 729 | 55 545 104 | 267 117 022 | 0.001 0 |
| DG-71132 | 无人机数据 | 5 | 71 132 | 87 134 159 | 385 107 892 | 0.000 9 |
| NM-85513 | 无人机数据 | 50 | 85 513 | 101 149 520 | 638 272 989 | 0.001 1 |
| MCZ-86607 | 无人机数据 | 8 | 86 607 | 98 685 808 | 588 743 297 | 0.001 0 |
| WQ-91700 | 无人机数据 | 60 | 91 700 | 93 622 588 | 535 230 410 | 0.000 8 |
| DaPu-133350 | 无人机数据 | 10 | 133 350 | 8 319 094 | 60 939 241 | 0.000 4 |
| HM-407470 | 无人机数据 | 35 | 407 470 | 352 798 750 | 1 790 563 849 | 0.000 2 |
| AJH-442300 | 无人机数据 | 35 | 442 300 | 112 769 192 | 1 500 899 038 | 0.000 3 |
| DG-1181860 | 无人机数据 | 114 | 1 181 860 | 1 016 725 921 | 5 084 023 410 | 0.000 079 |
| Syn1-5000000 | 模拟数据 | 2 | 5 000 000 | 404 947 456 | 2 839 153 207 | 0.000 003 |
| Syn2-10000000 | 模拟数据 | 2 | 10 000 000 | 809 963 105 | 5 836 771 022 | 0.000 001 |
Tab. 2
Memory usage, run time and accuracy for different methods"
| 数据集 | Ceres | PBA | DeepLM | MegBA | 本文方法 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 内存/GB | 时间/s | 精度/像素 | 内存/GB | 时间/s | 精度/像素 | 内存/GB | 时间/s | 精度/像素 | 内存/GB | 时间/s | 精度/像素 | 内存/GB | 时间/s | 精度/像素 | |
| Ladybug | 0.52 | 46.7 | 1.14 | 0.3 | 12.3 | 2.22 | 2.1 | 3.9 | 1.12 | 1.6 | 0.77 | 0.56 | 0.06 | 15.6 | 1.12 |
| Venice | 3.68 | 1992 | 0.66 | — | — | 6.2 | 24.4 | 0.66 | 13.6 | 11.9 | 0.33 | 0.27 | 69.7 | 0.67 | |
| Final | 16.8 | 3897 | 1.59 | 11.9 | 340 | 3.0 | 14.89 | 149 | 1.50 | 89.7 | 22.6 | 0.75 | 4.93 | 906.3 | 1.24 |
Tab. 3
Memory usage, run time and accuracy of the method in this paper for super large-scale datasets"
| 数据集 | Mt/GB | Mr/GB | Mu/GB | 迭代次数 | 时间/h | 精度/像素 |
|---|---|---|---|---|---|---|
| SW-20975 | 6.3 | 0.53 | 1.21 | 6 | 0.44 | 1.29 |
| JLP-44975 | 8.7 | 1.21 | 2.22 | 4 | 0.48 | 1.37 |
| YQC-46405 | 9.1 | 1.37 | 2.44 | 7 | 1.10 | 0.89 |
| JZ-49345 | 8.3 | 0.69 | 1.60 | 6 | 0.62 | 1.29 |
| XS-61729 | 10.5 | 0.91 | 2.06 | 6 | 0.66 | 1.05 |
| DG-71132 | 15.5 | 1.39 | 3.10 | 5 | 0.74 | 1.24 |
| NM-85513 | 23.0 | 2.46 | 5.04 | 6 | 2.72 | 1.22 |
| MCZ-86607 | 21.6 | 2.22 | 4.63 | 7 | 2.65 | 0.69 |
| WQ-91700 | 19.9 | 2.00 | 4.22 | 5 | 1.59 | 1.24 |
| DaPu-133350 | 2.1 | 1.81 | 2.23 | 6 | 0.23 | 1.45 |
| HM-407470 | 69 | 9.72 | 17.73 | 6 | 4.60 | 1.27 |
| AJH-442300 | 46.3 | 16.18 | 22.64 | 6 | 10.50 | 1.28 |
| DG-1181860 | 197 | 28.22 | 51.15 | 6 | 12.73 | 1.23 |
| Syn1-5000000 | 99.9 | 20.84 | 33.52 | 3 | 3.68 | 1.15 |
| Syn2-10000000 | 204 | 41.70 | 67.48 | 3 | 7.72 | 1.17 |
| [1] |
李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4): 379-384. DOI: .
doi: 10.11947/j.AGCS.2016.20160057 |
|
LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 379-384. DOI: .
doi: 10.11947/j.AGCS.2016.20160057 |
|
| [2] | 言司. 独辟蹊径,不断创新 贴近摄影测量:第三种摄影测量方式的诞生:专访武汉大学遥感信息工程学院张祖勋院士[J]. 中国测绘, 2019(10): 31-37. |
| YAN Si. Creating a new way, constantly innovating and approaching photogrammetry: the birth of the third photogrammetry method: interview with academician ZHANG Zuxun from school of remote sensing information engineering, Wuhan University[J]. China Surveying and Mapping, 2019(10): 31-37. | |
| [3] |
李清泉, 黄惠, 姜三, 等. 优视摄影测量方法及精度分析[J]. 测绘学报, 2022, 51(6): 996-1007. DOI: .
doi: 10.11947/J.AGCS.2022.20210685 |
|
LI Qingquan, HUANG Hui, JIANG San, et al. Optimized views photogrammetry and its precision analysis[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 996-1007. DOI: .
doi: 10.11947/j.AGCS.2022.20210685 |
|
| [4] |
闫利, 费亮, 叶志云, 等. 大范围倾斜多视影像连接点自动提取的区域网平差法[J]. 测绘学报, 2016, 45(3): 310-317. DOI: .
doi: 10.11947/J.AGCS.2016.20140673 |
|
YAN Li, FEI Liang, YE Zhiyun, et al. Automatic tie-point sextraction for triangulation of large-scale oblique multi-view images[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 310-317. DOI: .
doi: 10.11947/j.AGCS.2016.20140673 |
|
| [5] |
郑茂腾, 张永军, 朱俊峰, 等. 一种快速有效的大数据区域网平差方法[J]. 测绘学报, 2017, 46(2): 188-197. DOI: .
doi: 10.11947/j.AGCS.2017.20160293 |
|
ZHENG Maoteng, ZHANG Yongjun, ZHU Junfeng, et al. A fast and effective block adjustment method with big data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 188-197. DOI: .
doi: 10.11947/j.AGCS.2017.20160293 |
|
| [6] |
郑茂腾, 周顺平, 熊小东, 等. GPU并行区域网平差[J]. 测绘学报, 2017, 46(9): 1193-1201. DOI: .
doi: 10.11947/j.AGCS.2017.20160636 |
|
ZHENG Maoteng, ZHOU Shunping, XIONG Xiaodong, et al. GPU parallel bundle block adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1193-1201. DOI: .
doi: 10.11947/j.AGCS.2017.20160636 |
|
| [7] | LEVENBERG K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2(2): 164-168. |
| [8] | MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. |
| [9] |
王祥, 张永军, 黄山, 等. 旋转多基线摄影光束法平差法方程矩阵带宽优化[J]. 测绘学报, 2016, 45(2): 170-177. DOI: .
doi: 10.11947/j.AGCS.2016.20150282 |
|
WANG Xiang, ZHANG Yongjun, HUANG Shan, et al. Bandwidth optimization of normal equation matrix in bundle block adjustment in multi-baseline rotational photography[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 170-177. DOI: .
doi: 10.11947/j.AGCS.2016.20150282 |
|
| [10] | 林诒勋. 稀疏矩阵计算中的带宽最小化问题[J]. 运筹学杂志, 1983, 2(1): 20-27. |
| LIN Yixun. Bandwidth minimization problem in sparse matrix computations[J]. Chinese Journal of Operations Research, 1983, 2(1): 20-27. | |
| [11] | 郑志镇, 李尚健, 李志刚. 稀疏矩阵带宽减小的一种算法[J]. 华中理工大学学报, 1998, 26(12): 43-45. |
| ZHENG Zhizhen, LI Shangjian, LI Zhigang. A new algorithm for reducing bandwidth of sparse matrix[J]. Journal of Huazhong University of Science and Technology, 1998, 26(12): 43-45. | |
| [12] | GIBBS N E, POOLE W G, STOCKMEYER P K. An algorithm for reducing the bandwidth and profile of a sparse matrix[J]. SIAM Journal on Numerical Analysis, 1976, 13(2): 236-250. |
| [13] | ZHOU Lei, LUO Zixin, ZHEN Mingmin, et al. Stochastic bundle adjustment for efficient and scalable 3D reconstruction[C]//Procceedings of 2020 Computer Vision. Cham: Springer International Publishing, 2020: 364-379. |
| [14] | DEMMEL N, GAO Maolin, LAUDE E, et al. Distributed photometric bundle adjustment[C]//Proceedings of 2020 International Conference on 3D Vision. Fukuoka: IEEE, 2020: 140-149. |
| [15] | ERIKSSON A, BASTIAN J, CHIN T J, et al. A consensus-based framework for distributed bundle adjustment[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1754-1762. |
| [16] | RAMAMURTHY K N, LIN C C, ARAVKIN A, et al. Distributed bundle adjustment[C]//Proceedings of 2017 IEEE International Conference on Computer Vision Workshops. Venice: IEEE, 2017: 2146-2154. |
| [17] | ZHANG Runze, ZHU Siyu, FANG Tian, et al. Distributed very large scale bundle adjustment by global camera consensus[C]//Procceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 29-38. |
| [18] | GOVINDU V M. Lie-algebraic averaging for globally consistent motion estimation[C]//Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2004: 684-691. |
| [19] | HARTLEY R, TRUMPF J, DAI Yuchao, et al. Rotation averaging[J]. International Journal of Computer Vision, 2013, 103(3): 267-305. |
| [20] | ZHU Siyu, SHEN Tianwei, ZHOU Lei, et al. Parallel structure from motion from local increment to global averaging[EB/OL]. [2024-02-06]. https://arxiv.org/abs/1702.08601. |
| [21] | TOSELLI A, WIDLUND O. Domain decomposition methods algorithms and theory[M]. Berlin: Springer, 2004. |
| [22] | HUANG Jingwei, HUANG Shan, SUN Mingwei. DeepLM: large-scale nonlinear least squares on deep learning frameworks using stochastic domain decomposition[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10303-10312. |
| [23] | ZHENG Maoteng, ZHOU Shunping, XIONG Xiaodong, et al. A new GPU bundle adjustment method for large-scale data[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(9): 633-641. |
| [24] | REN Jie, LIANG Wenteng, YAN Ran, et al. Megba: a GPU-based distributed library for largescale bundle adjustment[C]//Proceedings of 2022 ECCV. Tel Aviv: Springer, 2022: 715-731. |
| [25] | WU Changchang, AGARWAL S, CURLESS B, et al. Multicore bundle adjustment[C]//Procceedings of 2011 CVPR. Colorado: IEEE, 2011: 3057-3064. |
| [26] | FRAHM J M, FITE-GEORGEL P, GALLUP D, et al. Building Rome on a cloudless day[C]//Proceedings of 2010 European Conference on Computer Vision. Berlin: Springer, 2010. |
| [27] | JARED H, SCHONBERGER J L, DUNN E, et al. Reconstructing the world in six days[C]//Proceedings of 2015 CVPR. Boston: IEEE, 2015. |
| [28] | KLINGNER B, MARTIN D, ROSEBOROUGH J. Street view motion-from-structure-from-motion[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 953-960. |
| [29] | SHEN Tianwei, ZHU Siyu, FANG Tian, et al. Graph-based consistent matching for structure-frommotion[C]//Proceedngs of 2016 ECCV. Amsterdam: Springer, 2016: 139-155. |
| [30] | NI Kai, STEEDLY D, DELLAERT F. Out-of-core bundle adjustment for large-scale 3D reconstruction[C]//Proceedings of 2007 IEEE International Conference on Computer Vision. Rio de Janeiro: IEEE, 2007: 1-8. |
| [31] | AGARWAL S, FURUKAWA Y, SNAVELY N, et al. Building Rome in a day[J]. Communications of the ACM, 2011, 54(10): 105-112. |
| [32] | AGARWAL S, MIERLE K. Ceres solver: tutorial & reference[EB/OL]. [2024-02-03]. https://www.helloandroid.cn/android/4.3_r1/download/external/ceres-solver/docs/ceres-solver.pdf. |
| [33] | AGARWAL S, SNAVELY N, SEITZ S M, et al. Bundle adjustment in the large[C]//Proceedings of 2010 ECCV. Berlin: Springer, 2010: 29-42. |
| [34] | BELL N, GARLAND M. Implementing sparse matrix-vector multiplication on through put-oriented processors[C]//Proceedings of 2009 Conference on High Performance Computing Networking, Storage and Analysis. Portland Oregon: ACM Press, 2009: 1-11. |
| [35] | SAAD Y. Sparskit: a basic tool kit for sparse computations[EB/OL]. [2024-02-04]. https://www-users.cse.umn.edu/~saad/software/SPARSKIT/. |
| [36] | ZHENG Maoteng, ZHANG Yongjun, ZHOU Shunping, et al. Bundle block adjustment of large-scale remote sensing data with block-based sparse matrix compression combined with preconditioned conjugate gradient[J]. Computers & Geosciences, 2016, 92: 70-78. |
| [37] | ZHENG Maoteng, ZHANG Fayong, ZHU Junfeng, et al. A fast and accurate bundle adjustment method for very large-scale data[J]. Computers & Geosciences, 2020, 142: 104539. |
| [38] | BYRÖD M, ÅSTRÖM K. Bundle adjustment using conjugate gradients with multiscale preconditioning[C]//Proceedings of 2009 British Machine Vision Conference. London: British Machine Vision Association, 2009. |
| [39] | BYROD M, ASTROM K. Conjugate gradient bundle adjustment[C]//Proceedings of 2010 ECCV. Berlin: Springer, 2010: 114-127. |
| [1] | WANG Jianrong, YANG Yuanxi, HU Yan, LÜ Yuan, YANG Xiuce, LU Xueliang, CAO Bincai. Preliminary location accuracy assessments of GF-14 stereo mapping satellite without ground control points [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 8-14. |
| [2] | YU Junpeng, WU Weidong, SUN Jiaming, MAN Yiyun, SHEN Gang. A RFM adjustment method for satellite remote sensing image with Fourier compensation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 127-134. |
| [3] | LI Jiatian, WANG Congcong, A Xiaohui, YAN Ling, ZHU Zhihao, GAO Peng. Method of close-range space intersection combining multi-image forward intersection with single hidden layer neural network [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 736-745. |
| [4] | WANG Jianrong, WANG Renxiang, HU Xin. Self-adaption Bundle Adjustment of Three-line Array Image with Smoothing Equation of Exterior Orientation Elements [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 968-972. |
| [5] | ZHENG Maoteng, ZHOU Shunping, XIONG Xiaodong, ZHU Junfeng. GPU Parallel Bundle Block Adjustment [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1193-1201. |
| [6] | ZHANG Chunsen, ZHU Shihuan, ZANG Yufu, XIAO Xiongwu, XUE Wanchang. GPS-supported Bundle Adjustment Method of UAV by Considering Exposure Delay [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 565-572. |
| [7] | ZHANG Li, AI Haibin, XU Biao, SUN Yushan, DONG Youqiang. Automatic Tie-point Extraction Based on Multiple-image Matching and Bundle Adjustment of Large Block of Oblique Aerial Images [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 554-564. |
| [8] | WANG Renxiang, WANG Jianrong, HU Xin. Analysis of Location Accuracy without Ground Control Points of Optical Satellite Imagery [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 332-337. |
| [9] | XUE Wu, ZHANG Yongsheng, ZHAO Ling, YU Ying, WANG Tao, LI Lei. Compareison of the Accuracy of Incremental SFM with POS-aided Bundle Adjustment [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 198-207. |
| [10] | ZHENG Maoteng, ZHANG Yongjun, ZHU Junfeng, XIONG Xiaodong, ZHOU Shunping. A Fast and Effective Block Adjustment Method with Big Data [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 188-197. |
| [11] | YU Anzhu, JIANG Ting, GUO Wenyue, QIN Jinchun, JIANG Gangwu. Bundle Adjustment for Satellite Linear Array Images Based on Total Least Squares [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 442-449. |
| [12] | WANG Renxiang, WANG Jianrong, HU Xin. Low-frequency Errors Compensation of Attitude Determination System in Satellite Photogrammetry [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2): 127-130. |
| [13] | WANG Renxiang, WANG Jianrong, HU Xin. Preliminary Location Accuracy Assessments of 3rd Satellite of TH-1 [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1135-1139. |
| [14] | . Stereo-camera Calibration with Restrictive Constraints [J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6): 877-885. |
| [15] | . Combined Bundle Block Adjustment Based on Existing Ground Control Points and Multi-period Aerial Imageries [J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1): 0-82. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||