Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (9): 1647-1663.doi: 10.11947/j.AGCS.2025.20240463
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Wei QU(
), Rongtang XU, Jiuyuan LI, Xingyou TANG, Peinan CHEN
Received:2024-11-14
Revised:2025-07-30
Online:2025-10-10
Published:2025-10-10
About author:QU Wei (1982—), male, PhD, professor, PhD supervisor, majors in geological disaster high-precision geodetic monitoring and disaster mechanism. E-mail: quwei@chd.edu.cn
Supported by:CLC Number:
Wei QU, Rongtang XU, Jiuyuan LI, Xingyou TANG, Peinan CHEN. Singular value decomposition normalization prediction method for non-steady landslide displacement[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1647-1663.
Tab. 1
Experimental parameters of different models"
| 基础模型 | 归一化策略 | 基础配置(模型结构) | 额外配置参数 | 模型编号 |
|---|---|---|---|---|
| MLP | - | (12-64-Re LU-4),MSE | - | M-1 |
| z-score | (z-score)-(12-64-ReLU-4),MSE | - | M-2 | |
| svd_norm | (svd_norm)-(12-64-Re LU-4),MSE | svd_norm(4) | M-3 | |
| LSTM | - | (12-128*2-4),MSE | - | L-1 |
| z-score | (z-score)-(12-128*2-4),MSE | - | L-2 | |
| svd_norm | (svd_norm)-(12-128*2-4),MSE | svd_norm(4) | L-3 | |
| GRU | - | (12-128*2-4),MSE | - | G-1 |
| z-score | (z-score)-(12-128*2-4),MSE | - | G-2 | |
| svd_norm | (svd_norm)-(12-128*2-4),MSE | svd_norm(4) | G-3 | |
| TCN | - | (1,4,[16,32,16]),MSE | - | T-1 |
| z-score | (z-score)-(1,4,[16,32,16]),MSE | - | T-2 | |
| svd_norm | (svd_norm)-(1,4,[16,32,16]),MSE | svd_norm(4) | T-3 |
Tab. 2
Test results of different models using different normalization methods on the HF05 and HF09 test sets"
| 模型 | HF05 | HF09 | ||||
|---|---|---|---|---|---|---|
| RMSE/m | MAE/m | R2 | RMSE/m | MAE/m | R2 | |
| M-1 | 0.030 | 0.025 | 0.989 | 0.085 | 0.077 | 0.975 |
| M-2 | 0.021 | 0.016 | 0.987 | 0.046 | 0.038 | 0.973 |
| M-3 | 0.007 | 0.004 | 0.996 | 0.025 | 0.018 | 0.978 |
| L-1 | 0.047 | 0.040 | 0.986 | 0.066 | 0.059 | 0.968 |
| L-2 | 0.132 | 0.116 | 0.976 | 0.158 | 0.149 | 0.962 |
| L-3 | 0.008 | 0.004 | 0.997 | 0.019 | 0.011 | 0.975 |
| G-1 | 0.035 | 0.029 | 0.987 | 0.096 | 0.090 | 0.965 |
| G-2 | 0.085 | 0.074 | 0.983 | 0.159 | 0.149 | 0.961 |
| G-3 | 0.007 | 0.004 | 0.997 | 0.019 | 0.011 | 0.975 |
| T-1 | 0.500 | 0.494 | 0.994 | 0.312 | 0.306 | 0.972 |
| T-2 | 0.150 | 0.142 | 0.993 | 0.161 | 0.150 | 0.971 |
| T-3 | 0.008 | 0.005 | 0.996 | 0.042 | 0.033 | 0.974 |
Tab. 3
Test RMSE error of different normalization methods under different segmentation schemes on the test set of HF05 and HF09 datasets"
| 模型 | 数据分割方案 | |||||||
|---|---|---|---|---|---|---|---|---|
| (12,3,4) | (9,3,3) | (6,3,2) | (8,4,2) | (6,2,3) | (8,2,4) | (10,2,5) | (12,2,6) | |
| HF05_M-1 | 0.024 7 | 0.031 6 | 0.015 7 | 0.025 8 | 0.041 7 | 0.026 3 | 0.030 5 | 0.023 0 |
| HF05_L-1 | 0.046 9 | 0.034 8 | 0.017 3 | 0.018 4 | 0.010 7 | 0.012 8 | 0.029 8 | 0.029 9 |
| HF05_G-1 | 0.026 6 | 0.020 7 | 0.019 8 | 0.025 6 | 0.011 1 | 0.018 0 | 0.022 9 | 0.032 6 |
| HF05_T-1 | 0.459 5 | 0.538 8 | 0.517 8 | 0.545 9 | 0.521 8 | 0.520 8 | 0.462 8 | 0.493 5 |
| HF05_M-2 | 0.019 1 | 0.023 3 | 0.034 1 | 0.018 7 | 0.014 4 | 0.012 9 | 0.028 8 | 0.024 3 |
| HF05_L-2 | 0.124 4 | 0.116 5 | 0.081 3 | 0.112 1 | 0.082 9 | 0.105 5 | 0.115 4 | 0.129 9 |
| HF05_G-2 | 0.087 3 | 0.070 2 | 0.060 4 | 0.071 7 | 0.062 8 | 0.069 4 | 0.078 1 | 0.093 6 |
| HF05_T-2 | 0.089 2 | 0.234 2 | 0.206 5 | 0.357 6 | 0.171 2 | 0.189 3 | 0.209 4 | 0.331 1 |
| HF05_M-3 | 0.006 5 | 0.006 3 | 0.006 3 | 0.008 2 | 0.004 7 | 0.004 9 | 0.004 8 | 0.005 0 |
| HF05_L-3 | 0.006 5 | 0.006 3 | 0.006 2 | 0.008 0 | 0.004 7 | 0.004 8 | 0.004 8 | 0.005 0 |
| HF05_G-3 | 0.006 5 | 0.006 3 | 0.006 3 | 0.008 0 | 0.004 8 | 0.004 9 | 0.004 7 | 0.004 9 |
| HF05_T-3 | 0.006 6 | 0.006 2 | 0.006 4 | 0.008 4 | 0.004 6 | 0.004 8 | 0.004 7 | 0.004 9 |
| HF09_M-1 | 0.084 9 | 0.060 6 | 0.124 5 | 0.105 0 | 0.058 2 | 0.115 0 | 0.097 3 | 0.063 6 |
| HF09_L-1 | 0.049 1 | 0.055 7 | 0.081 1 | 0.072 6 | 0.069 9 | 0.046 9 | 0.040 5 | 0.049 3 |
| HF09_G-1 | 0.086 6 | 0.069 4 | 0.071 0 | 0.084 6 | 0.097 7 | 0.080 4 | 0.073 9 | 0.093 9 |
| HF09_T-1 | 0.295 6 | 0.311 5 | 0.315 1 | 0.288 9 | 0.323 7 | 0.329 4 | 0.323 0 | 0.302 0 |
| HF09_M-2 | 0.024 9 | 0.049 8 | 0.062 3 | 0.043 4 | 0.027 0 | 0.042 8 | 0.059 1 | 0.037 6 |
| HF09_L-2 | 0.150 0 | 0.150 7 | 0.166 7 | 0.163 2 | 0.151 6 | 0.156 1 | 0.157 6 | 0.153 2 |
| HF09_G-2 | 0.152 6 | 0.144 7 | 0.141 0 | 0.148 4 | 0.142 3 | 0.138 6 | 0.156 9 | 0.159 8 |
| HF09_T-2 | 0.149 3 | 0.173 4 | 0.114 0 | 0.128 3 | 0.125 9 | 0.346 0 | 0.191 6 | 0.338 8 |
| HF09_M-3 | 0.046 4 | 0.039 3 | 0.031 4 | 0.052 3 | 0.105 1 | 0.101 0 | 0.028 2 | 0.041 5 |
| HF09_L-3 | 0.018 0 | 0.018 3 | 0.022 1 | 0.023 0 | 0.019 6 | 0.017 3 | 0.017 1 | 0.016 7 |
| HF09_G-3 | 0.017 8 | 0.018 2 | 0.022 1 | 0.022 9 | 0.019 6 | 0.017 2 | 0.017 1 | 0.015 8 |
| HF09_T-3 | 0.021 3 | 0.016 9 | 0.019 2 | 0.034 0 | 0.019 4 | 0.016 3 | 0.020 8 | 0.019 7 |
Tab. 4
Test RMSE error of different normalization methods under different segmentation schemes on the test set of Bazimen datasets"
| 模型 | 数据分割方案 | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| (12,4,3) | (12,3,4) | (9,3,3) | (6,3,2) | (8,4,2) | (6,2,3) | (8,2,4) | (10,2,5) | (12,2,6) | |
| Bazimen_M-1 | 0.334 3 | 0.366 6 | 0.337 5 | 0.447 9 | 0.629 5 | 0.330 1 | 0.245 3 | 0.211 6 | 0.162 4 |
| Bazimen_L-1 | 0.136 1 | 0.103 6 | 0.132 3 | 0.224 8 | 0.187 2 | 0.196 6 | 0.135 1 | 0.1193 | 0.090 9 |
| Bazimen_G-1 | 0.136 4 | 0.154 0 | 0.152 5 | 0.202 3 | 0.142 8 | 0.202 3 | 0.169 9 | 0.171 7 | 0.096 9 |
| Bazimen_T-1 | 0.582 4 | 0.718 5 | 0.582 9 | 0.583 4 | 0.602 5 | 0.583 1 | 0.567 8 | 0.578 6 | 0.538 8 |
| Bazimen_M-2 | 0.485 3 | 0.329 4 | 0.416 5 | 0.372 7 | 0.392 | 0.315 3 | 0.226 2 | 0.301 2 | 0.369 7 |
| Bazimen_L-2 | 0.228 8 | 0.215 9 | 0.234 3 | 0.237 1 | 0.230 3 | 0.19 9 | 0.169 9 | 0.176 2 | 0.140 7 |
| Bazimen_G-2 | 0.136 2 | 0.111 3 | 0.140 1 | 0.129 2 | 0.168 4 | 0.116 7 | 0.118 8 | 0.099 9 | 0.116 4 |
| Bazimen_T-2 | 0.609 5 | 0.596 7 | 0.611 7 | 0.619 2 | 0.605 9 | 0.625 7 | 0.608 2 | 0.605 8 | 0.578 3 |
| Bazimen_M-3 | 0.055 9 | 0.045 3 | 0.029 2 | 0.047 7 | 0.052 2 | 0.034 3 | 0.024 8 | 0.029 8 | 0.027 5 |
| Bazimen_L-3 | 0.074 4 | 0.044 6 | 0.040 5 | 0.047 7 | 0.074 2 | 0.034 2 | 0.025 7 | 0.029 9 | 0.032 7 |
| Bazimen_G-3 | 0.044 8 | 0.032 7 | 0.039 7 | 0.046 8 | 0.075 6 | 0.034 8 | 0.021 4 | 0.029 8 | 0.027 2 |
| Bazimen_T-3 | 0.058 2 | 0.046 2 | 0.0650 | 0.047 8 | 0.069 1 | 0.034 2 | 0.026 4 | 0.030 1 | 0.027 0 |
Tab. 5
Test result of the Non-Stationary Transformer model on the HF05 and HF09 dataset test sets"
| 数据集站点 | 模型 | RMSE/m | MAE/m | R2 |
|---|---|---|---|---|
| HF05 | M-3 | 0.007 | 0.004 | 0.996 |
| L-3 | 0.008 | 0.004 | 0.997 | |
| G-3 | 0.007 | 0.004 | 0.997 | |
| T-3 | 0.008 | 0.005 | 0.996 | |
| Non-Stationary Transformer | 0.007 73 | 0.005 33 | 0.996 92 | |
| HF09 | M-3 | 0.025 | 0.018 | 0.978 |
| L-3 | 0.019 | 0.011 | 0.975 | |
| G-3 | 0.019 | 0.011 | 0.975 | |
| T-3 | 0.042 | 0.033 | 0.974 | |
| Non-Stationary Transformer | 0.022 42 | 0.014 9 | 0.970 93 |
| [1] | 陈宁生, 吴铭洋, 李安辉, 等. 云南镇雄“1·22”山体滑坡灾害调查[J]. 山地学报, 2024, 42(3): 422-430. |
| CHEN Ningsheng, WU Mingyang, LI Anhui, et al. Field survey of the Zhengxiong landslide on January 22, 2024 in Yunnan province, China[J]. Mountain Research, 2024, 42(3): 422-430. | |
| [2] |
白正伟, 张勤, 黄观文, 等. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429. DOI: .
doi: 10.11947/j.AGCS.2019.20190167 |
|
BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429. DOI: .
doi: 10.11947/j.AGCS.2019.20190167 |
|
| [3] |
王晨辉, 赵贻玖, 郭伟, 等. 滑坡位移EEMD-SVR预测模型[J]. 测绘学报, 2022, 51(10): 2196-2204. DOI: .
doi: 10.11947/j.AGCS.2022.20220291 |
|
WANG Chenhui, ZHAO Yijiu, GUO Wei, et al. Displacement prediction model of landslide based on ensemble empirical mode decomposition and support vector regression[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2196-2204. DOI: .
doi: 10.11947/j.AGCS.2022.20220291 |
|
| [4] | 张振坤, 张冬梅, 李江, 等. 基于多头自注意力机制的LSTM-MH-SA滑坡位移预测模型研究[J]. 岩土力学, 2022, 43(S2): 477-486, 507. |
| ZHANG Zhenkun, ZHANG Dongmei, LI Jiang, et al. Study on LSTM-MH-SA landslide displacement prediction model based on multi-head self-attention mechanism[J]. Rock and Soil Mechanics, 2022, 43(S2): 477-486, 507. | |
| [5] | MA Siyuan, SHAO Xiaoyi, XU Chong. Landslide susceptibility mapping in terms of the slope-unit or raster-unit, which is better?[J]. Journal of Earth Science, 2023, 34(2): 386-397. |
| [6] | LONG Yujie, LI Weile, HUANG Runqiu, et al. A comparative study of supervised classification methods for investigating landslide evolution in the Mianyuan River Basin, China[J]. Journal of Earth Science, 2023, 34(2): 316-329. |
| [7] | 唐菲菲, 唐天俊, 朱洪洲, 等. 结合注意力机制和Bi-LSTM的降雨型滑坡位移预测[J]. 测绘通报, 2022(9): 74-79, 104. |
| TANG Feifei, TANG Tianjun, ZHU Hongzhou, et al. Rainfall landslide deformation prediction based on attention mechanism and Bi-LSTM[J]. Bulletin of Surveying and Mapping, 2022(9): 74-79, 104. | |
| [8] | HUANG Da, HE Jun, SONG Yixiang, et al. Displacement prediction of the muyubao landslide based on a GPS time-series analysis and temporal convolutional network model[J]. Remote Sensing, 2022, 14(11): 2656. |
| [9] | 杨背背, 殷坤龙, 杜娟. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报, 2018, 37(10): 2334-2343. |
| YANG Beibei, YIN Kunlong, DU Juan. A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2334-2343. | |
| [10] | 张泰丽, 吴廷尧, 王鲁琦, 等. 基于Box-Jenkins随机模型的滑坡稳定性预测模型[J]. 地球科学, 2023, 48(5): 1989-1999. |
| ZHANG Taili, WU Tingyao, WANG Luqi, et al. Landslide stability prediction model based on Box-Jenkins stochastic model[J]. Earth Science, 2023, 48(5): 1989-1999. | |
| [11] | 蒋平. 基于回归神经网络的滑坡位移时间序列预测研究[D]. 武汉: 华中科技大学, 2017. |
| JIANG Ping. Research on prediction of landslide displacement time series based on recurrent neural network[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
| [12] | 谭龙, 陈冠, 曾润强, 等. 人工神经网络在滑坡敏感性评价中的应用[J]. 兰州大学学报(自然科学版), 2014, 50(1): 15-20. |
| TAN Long, CHEN Guan, ZENG Runqiang, et al. Application of artificial neural network in landslide susceptibility assessment[J]. Journal of Lanzhou University (Natural Sciences), 2014, 50(1): 15-20. | |
| [13] | KUMAR P, PRIYANKA P, DHANYA J, et al. Analyzing the performance of univariate and multivariate machine learning models in soil movement prediction: a comparative study[J]. IEEE Access, 2023, 11: 62368-62381. |
| [14] | 杜岩, 宁利泽, 谢谟文, 等. 考虑时间滞后效应的库岸滑坡位移预测[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1347-1355. |
| DU Yan, NING Lize, XIE Mowen, et al. A prediction model of landslide displacement in reservoir area considering time lag effect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1347-1355. | |
| [15] |
高雅萍, 陈曦, 涂锐. 顾及降雨影响的动态优化时滞时序GM(1, 2)模型在滑坡位移预测中的应用[J]. 测绘学报, 2022, 51(10): 2183-2195. DOI: .
doi: 10.11947/j.AGCS.2022.20220290 |
|
GAO Yaping, CHEN Xi, TU Rui. Application of dynamic optimization time-delay GM(1, 2) model in landslide displacement prediction considering the influence of rainfall[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2183-2195. DOI: .
doi: 10.11947/j.AGCS.2022.20220290 |
|
| [16] | 刘艳辉, 方然可, 苏永超, 等. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报, 2021, 29(1): 116-124. |
| LIU Yanhui, FANG Ranke, SU Yongchao, et al. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology, 2021, 29(1): 116-124. | |
| [17] | MA Junwei, XIA Ding, GUO Haixiang, et al. Metaheuristic-based support vector regression for landslide displacement prediction: a comparative study[J]. Landslides, 2022, 19(10): 2489-2511. |
| [18] | XU Jiancong, JIANG Yu, YANG Chengbin. Landslide displacement prediction during the sliding process using XGBoost, SVR and RNNs[J]. Applied Sciences, 2022, 12(12): 6056. |
| [19] | YANG Beibei, YIN Kunlong, LACASSE S, et al. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides, 2019, 16(4): 677-694. |
| [20] | ZHANG Yonggang, TANG Jun, CHENG Yunming, et al. Prediction of landslide displacement with dynamic features using intelligent approaches[J]. International Journal of Mining Science and Technology, 2022, 32(3): 539-549. |
| [21] | ZHOU Chao, YIN Kunlong, CAO Ying, et al. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method[J]. Landslides, 2018, 15(11): 2211-2225. |
| [22] | MA Junwei, TANG Huiming, LIU Xiao, et al. Probabilistic forecasting of landslide displacement accounting for epistemic uncertainty: a case study in the Three Gorges Reservoir area, China[J]. Landslides, 2018, 15(6): 1145-1153. |
| [23] | MENG Shaoqiang, SHI Zhenming, PENG Ming, et al. Landslide displacement prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108078. |
| [24] | QIAN Guoqi, TORDESILLAS A, ZHENG Hangfei. Landslide forecast by time series modeling and analysis of high-dimensional and non-stationary ground motion data[J]. Forecasting, 2021, 3(4): 850-867. |
| [25] |
HUANG Faming, YIN Kunlong, ZHANG Guirong, et al. Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory[J]. Environmental Earth Sciences, 2016, 75(20): 1376. DOI: .
doi: 10.1007/s12665-016-6133-0 |
| [26] |
LI Yuanyao, SUN Ronglin, YIN Kunlong, et al. Forecasting of landslide displacements using a chaos theory based wavelet analysis-Volterra filter model[J]. Scientific Reports, 2019, 9: 19853. DOI: .
doi: 10.1038/s41598-019-56405-y |
| [27] | SHEN Li, WEI Yuning, WANG Yangzhu. GBT: two-stage transformer framework for non-stationary time series forecasting[J]. Neural Networks, 2023, 165: 953-970. |
| [28] | KIM T, KIM J, TAE Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[C]//Proceedings of 2021 International Conference on Learning Representations. [S.l.]: IEEE, 2021. |
| [29] | LIU Yong, WU Haixu, WANG Jianmin, et al. Non-stationary transformers: exploring the stationarity in time series forecasting[J]. Advances in Neural Information Processing Systems, 2022, 35: 9881-9893. |
| [30] | DU Yuntao, WANG Jindong, FENG Wenjie, et al. AdaRNN: adaptive learning and forecasting of time series[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Queensland: ACM Press, 2021: 402-411. |
| [31] | KOTSIANTIS S B, KANELLOPOULOS D, PINTELAS P E. Data preprocessing for supervised leaning[J]. International journal of computer science, 2006, 1(2): 111-117. |
| [32] | 李国栋, 沈桂莹, 李珊珊, 等. 基于LS-SVM的侧堰泄流能力预测模型[J]. 应用基础与工程科学学报, 2023, 31(4): 843-851. |
| LI Guodong, SHEN Guiying, LI Shanshan, et al. Prediction model of side weir discharge capacity based on LS-SVM[J]. Journal of Basic Science and Engineering, 2023, 31(4): 843-851. | |
| [33] |
张勤, 白正伟, 黄观文, 等. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1985-2000. DOI: .
doi: 10.11947/j.AGCS.2022.20220299 |
|
ZHANG Qin, BAI Zhengwei, HUANG Guanwen, et al. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1985-2000. DOI: .
doi: 10.11947/j.AGCS.2022.20220299 |
|
| [34] | MUNIR M, SIDDIQUI S A, DENGEL A, et al. DeepAnT: a deep learning approach for unsupervised anomaly detection in time series[J]. IEEE Access, 2019, 7: 1991-2005. |
| [35] | WANG Yankun, TANG Huiming, HUANG Jinsong, et al. A comparative study of different machine learning methods for reservoir landslide displacement prediction[J]. Engineering Geology, 2022, 298: 106544. |
| [1] | Huiqin WANG, Jiahao LI, Xin LIU, Yongqiang HE, Jia LUO, Bincan LIU. A denoising method for underground pipeline data acquired by ground penetrating radar based on DnNet [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1464-1475. |
| [2] | Bo ZHU, Houpu LI, Libo ZHU, Shaofeng BIAN, Cheng CHEN. A regional geomagnetic field model for China based on Swarm satellite data and 3D Legendre polynomials [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(3): 461-472. |
| [3] | Chuanguang ZHU, Jixian ZHANG, Sichun LONG, Ronghua YANG, Wenhao WU, Liya ZHANG. Phase estimation of distributed scatterer based on singular value decomposition [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1308-1320. |
| [4] | Hanwei ZHANG, Yongqin YANG, Xiaoling LI, Hua ZHANG. Renormalization and its optimization of the Legendre function of the second kind [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1298-1307. |
| [5] | WANG Chenhui, ZHAO Yijiu, GUO Wei, MENG Qingjia, LI Bin. Displacement prediction model of landslide based on ensemble empirical mode decomposition and support vector regression [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2196-2204. |
| [6] | XIE Peng, YANG Chuncheng, XIONG Shun, HE Liesong, ZHOU Xiaodong. Design and optimization of spatial vector data storage model based on HBase [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1365-1373. |
| [7] | DONG Yang, FAN Dazhao, JI Song, LEI Rong. The Purification Method of Matching Points Based on Principal Component Analysis [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 228-236. |
| [8] | CUI Hao, ZHANG Li, AI Haibin, XU Biao, WANG Zhonghui. Large Collection Satellite Images Color Normalization Algorithm Based on Tone Reference Map [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(12): 1986-1997. |
| [9] | . An Extended SURF Descriptor and Its Application of Remote Sensing Images Registration [J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3): 0-0. |
| [10] | . Rigde of probability desity based color normalization method for Image Mosaic [J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2): 247-252. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||