[1] ADCOCK R J.Note on the Method of Least Squares[J].Analyst,1877,4(6):183-184. [2] GOLUB G H,VAN LOAN C F.An Analysis of the Total Least Squares Problem[J].SIAM Journal on Numerical Analysis,1980,17(6):883-893. [3] VAN HUFFEL S,ZHA Hongyuan.An Efficient Total Least Squares Algorithm Based on a Rank-revealing Two-sided Orthogonal Decomposition[J].Numerical Algorithms,1993,4(1):101-133. [4] 姚宜斌,孔建.顾及设计矩阵随机误差的最小二乘组合新解法[J].武汉大学学报(信息科学版),2014,39(9):1028-1032. YAO Yibin,KONG Jian.A New Combined LS Method Considering Random Errors of Design Matrix[J].Geomatics and Information Science of Wuhan University,2014,39(9):1028-1032. [5] 曾文宪,方兴,刘经南,等.附有不等式约束的加权整体最小二乘算法[J].测绘学报,2014,43(10):1013-1018.DOI:10.13485/j.cnki.11-2089.2014.0173. ZENG Wenxian,FANG Xing,LIU Jingnan,et al.Weighted Total Least Squares Algorithm with Inequality Constraints[J].Acta Geodaetica et Cartographica Sinica,2014,43(10):1013-1018.DOI:10.13485/j.cnki.11-2089.2014.0173. [6] SCHAFFRIN B,WIESER A.On Weighted Total Least-squares Adjustment for Linear Regression[J].Journal of Geodesy,2008,82(7):415-421. [7] SCHUERMANS M,MARKOVSKY I,VAN HUFFEL S.An Adapted Version of the Element-wise Weighted Total Least Squares Method for Applications in Chemometrics[J].Chemometrics and Intelligent Laboratory Systems,2007,85(1):40-46. [8] VAN HUFFEL S,VANDEWALLE J.Analysis and Properties of the Generalized Total Least Squares Problem AX≈B When Some or All Columns in A are Subject to Error[J].SIAM Journal on Matrix Analysis and Applications,1989,10(3):294-315. [9] XU Peiliang,LIU Jingnan,SHI Chuang.Total Least Squares Adjustment in Partial Errors-in-variables Models:Algorithm and Statistical Analysis[J].Journal of Geodesy,2012,86(8):661-675. [10] FANG X.Weighted Total Least Squares Solutions for Applications in Geodesy[D].Hannover,Germany:Leibniz University,2011. [11] 方兴,曾文宪,刘经南,等.三维坐标转换的通用整体最小二乘算法[J].测绘学报,2014,43(11):1139-1143.DOI:10.13485/j.cnki.11-2089.2014.0193. FANG Xing,ZENG Wenxian,LIU Jingnan,et al.A General Total Least Squares Algorithm for Three-dimensional Coordinate Transformations[J].Acta Geodaetica et Cartographica Sinica,2014,43(11):1139-1143.DOI:10.13485/j.cnki.11-2089.2014.0193. [12] 赵俊,归庆明.部分变量误差模型的整体抗差最小二乘估计[J].测绘学报,2016,45(5):552-559.DOI:10.11947/j.AGCS.2016.20150374. ZHAO Jun,GUI Qingming.Total Robustified Least Squares Estimation in Partial Errors-in-variables Model[J].Acta Geodaetica et Cartographica Sinica,2016,45(5):552-559.DOI:10.11947/j.AGCS.2016.20150374. [13] 王乐洋,余航,陈晓勇.Partial EIV模型的解法[J].测绘学报,2016,45(1):22-29.DOI:10.11947/j.AGCS.2016.20140560. WANG Leyang,YU Hang,CHEN Xiaoyong.An Algorithm for Partial EIV Model[J].Acta Geodaetica et Cartographica Sinica,2016,45(1):22-29.DOI:10.11947/j.AGCS.2016.20140560. [14] 陶叶青,高井祥,姚一飞.基于中位数法的抗差总体最小二乘估计[J].测绘学报,2016,45(3):297-301.DOI:10.11947/j.AGCS.2016.20150234. TAO Yeqing,GAO Jingxiang,YAO Yifei.Solution for Robust Total Least Squares Estimation Based on Median Method[J].Acta Geodaetica et Cartographica Sinica,2016,45(3):297-301.DOI:10.11947/j.AGCS.2016.20150234. [15] 吴富梅,杨元喜.基于高阶AR模型的陀螺随机漂移模型[J].测绘学报,2007,36(4):389-394. WU Fumei,YANG Yuanxi.Gyroscope Random Drift Model Based on the Higher-order AR Model[J].Acta Geodaetica et Cartographica Sinica,2007,36(4):389-394. [16] 潘国荣,刘大杰.顾及邻近点变形因素项的动态模型辨识及预测[J].测绘学报,2001,30(1):32-35. PAN Guorong,LIU Dajie.Dynamic Modeling Identification and Predication in Consideration of the Adjacent Point Deformation[J].Acta Geodaetica et Cartographica Sinica,2001,30(1):32-35. [17] 杨元喜,崔先强.动态定位有色噪声影响函数——以一阶AR模型为例[J].测绘学报,2003,32(1):6-10. YANG Yuanxi,CUI Xianqiang.Influence Functions of Colored Noises on Kinematic Positioning:Taking the AR Model of First Class as an Example[J].Acta Geodaetica et Cartographica Sinica,2003,32(1):6-10. [18] 叶志伟,尹晖,张守建.AR模型谱在超导重力数据信号检测中的分析研究[J].武汉大学学报(信息科学版),2007,32(6):536-539. YE Zhiwei,YIN Hui,ZHANG Shoujian.Using AR Model Spectrum Algorithms to Detect Superconducting Gravimetric Signals[J].Geomatics and Information Science of Wuhan University,2007,32(6):536-539. [19] 张昊,王琪洁,朱建军,等.对钱德勒参数进行时变修正的CLS+AR模型在极移预测中的应用[J].武汉大学学报(信息科学版),2012,37(3):286-289. ZHANG Hao,WANG Qijie,ZHU Jianjun,et al.Application of CLS+AR Model Polar Motion to Prediction Based on Time-varying Parameters Correction of Chandler Wobble[J].Geomatics and Information Science of Wuhan University,2012,37(3):286-289. [20] 王乐洋,许才军,鲁铁定.边长变化反演应变参数的总体最小二乘方法[J].武汉大学学报(信息科学版),2010,35(2):181-184. WANG Leyang,XU Caijun,LU Tieding.Inversion of Strain Parameter Using Distance Changes Based on Total Least Squares[J].Geomatics and Information Science of Wuhan University,2010,35(2):181-184. [21] 魏二虎,殷志祥,李广文,等.虚拟观测值法在三维坐标转换中的应用研究[J].武汉大学学报(信息科学版),2014,39(2):152-156. WEI Erhu,YIN Zhixiang,LI Guangwen,et al.On 3D Coordinate Transformations with Virtual Observation Method[J].Geomatics and Information Science of Wuhan University,2014,39(2):152-156. [22] 姚宜斌,黄书华,孔建,等.空间直线拟合的整体最小二乘算法[J].武汉大学学报(信息科学版),2014,39(5):571-574. YAO Yibin,HUANG Shuhua,KONG Jian,et al.Total Least Squares Algorithm for Fitting Spatial Straight Lines[J].Geomatics and Information Science of Wuhan University,2014,39(5):571-574. [23] CRYER J D,CHAN K S.时间序列分析及应用[M].潘红宇,译.北京:机械工业出版社,2011. CRYER J D,CHAN K S.Time Series Analysis with Applications in R[M].PAN Hongyu,tran.Beijing:China Machine Press,2011. [24] 姚宜斌,黄书华,陈家君.求解自回归模型参数的整体最小二乘新方法[J].武汉大学学报(信息科学版),2014,39(12):1463-1466. YAO Yibin,HUANG Shuhua,CHEN Jiajun.A New Method of TLS to Solving the Autoregressive Model Parameter[J].Geomatics and Information Science of Wuhan University,2014,39(12):1463-1466. [25] 王新洲,陶本藻,邱卫宁,等.高等测量平差[M].北京:测绘出版社,2013. WANG Xinzhou,TAO Benzao,QIU Weining,et al.Advanced Surveying Adjustment[M].Beijing:Mapping Publishing Company,2013. |