[1] RAY J, SENIOR K. IGS/BIPM pilot project:GPS carrier phase for time/frequency transfer and timescale formation[J]. Metrologia, 2003, 40(4):205. [2] PETIT G, HARMEGNIES A, MERCIER F, et al. The time stability of PPP links for TAI[C]//Proceedings of 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum. San Francisco, CA:IEEE, 2011. [3] 陈宪冬. 基于大地型时频传递接收机的精密时间传递算法研究[J]. 武汉大学学报(信息科学版), 2008, 33(3):245-248. CHEN Xiandong. Precision time transfer methods based on geodetic time and frequency transfer receivers[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3):245-248. [4] 闫伟, 袁运斌, 欧吉坤, 等. 非组合精密单点定位算法精密授时的可行性研究[J]. 武汉大学学报(信息科学版), 2011, 36(6):648-651. YAN Wei, YUAN Yunbin, OU Jikun, et al. Feasibility of precise timing with uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6):648-651. [5] 张小红, 蔡诗响, 李星星, 等. 利用GPS精密单点定位进行时间传递精度分析[J]. 武汉大学学报(信息科学版), 2010, 35(3):274-278. ZHANG Xiaohong, CAI Shixiang, LI Xingxing, et al. Accuracy analysis of time and frequency transfer based on precise point positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3):274-278. [6] 于合理, 郝金明, 田英国, 等. GNSS单站授时系统性偏差分析[J]. 大地测量与地球动力学, 2017, 37(1):30-34. YU Heli, HAO Jinming, TIAN Yingguo, et al. Analysis of systematic bias of single station time service[J]. Journal of Geodesy and Geodynamics, 2017, 37(1):30-34. [7] WANG Kan, ROTHACHER M. Stochastic modeling of high-stability ground clocks in GPS analysis[J]. Journal of Geodesy, 2013, 87(5):427-437. [8] WEINBACH U, SCHÖN S. GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP[J]. Advances in Space Research, 2011, 47(2):229-238. [9] 张小红, 陈兴汉, 郭斐. 高性能原子钟钟差建模及其在精密单点定位中的应用[J]. 测绘学报, 2015, 44(4):392-398. ZHANG Xiaohong, CHEN Xinghan, GUO Fei. High-performance atomic clock modeling and its application in precise point positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4):392-398. [10] 于合理, 郝金明, 刘伟平, 等. 附加原子钟物理模型的PPP时间传递算法[J]. 测绘学报, 2016, 45(11):1285-1292. DOI:10.11947/j.AGCS.2016.20160217. YU Heli, HAO Jinming, LIU Weiping, et al. A time transfer algorithm of precise point positioning with additional atomic clock physical model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1285-1292. DOI:10.11947/j.AGCS.2016.20160217. [11] DELPORTE J, MERCIER F, LAURICHESSE D, et al. Fixing integer ambiguities for GPS carrier phase time transfer[C]//Proceedings of 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. Geneva, Switzerland:IEEE, 2007:927-932. [12] PETIT G, KANJ A, LOYER S, et al. 1×10-16 frequency transfer by GPS PPP with integer ambiguity resolution[J]. Metrologia, 2015, 52(2):301-309. [13] KOUBA J, HÉROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS Solutions, 2001, 5(2):12-28. [14] LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2):135-149. [15] SHI Junbo, GAO Yang. A comparison of three PPP integer ambiguity resolution methods[J]. GPS Solutions, 2014, 18(4):519-528. [16] MONTENBRUCK O, HACKEL S, JÄGGI A. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations[J]. Journal of Geodesy, 2018, 92(7):711-726. [17] 李彦杰, 杨元喜, 何海波. 附加约束条件对GNSS/INS组合导航结果的影响分析[J]. 武汉大学学报(信息科学版), 2017, 42(9):1249-1255. LI Yanjie, YANG Yuanxi, HE Haibo. Effects analysis of constraints on GNSS/INS integrated navigation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1249-1255. [18] LI Tao, WANG Jinling, LAURICHESSE D. Modeling and quality control for reliable precise point positioning integer ambiguity resolution with GNSS modernization[J]. GPS Solutions, 2014, 18(3):429-442. [19] 潘宗鹏, 柴洪洲, 刘军, 等. 基于部分整周模糊度固定的非差GPS精密单点定位方法[J]. 测绘学报, 2015, 44(11):1210-1218. PAN Zongpeng, CHAI Hongzhou, LIU Jun, et al. GPS partial ambiguity resolution method for zero-difference precise point positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11):1210-1218. [20] 刘帅, 孙付平, 郝万亮, 等. 整数相位钟法精密单点定位模糊度固定模型及效果分析[J]. 测绘学报, 2014, 43(12):1230-1237. DOI:10.13485/j.cnki.11-2089.2014.0195. LIU Shuai, SUN Fuping, HAO Wanliang, et al. Modeling and effects analysis of PPP ambiguity fixing based on integer phase clock method[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12):1230-1237. DOI:10.13485/j.cnki.11-2089.2014.0195. [21] LOYER S, PEROSANZ F, MERCIER F, et al. Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center[J]. Journal of Geodesy, 2012, 86(11):991-1003. [22] PARKINS A. Increasing GNSS RTK availability with a new single-epoch batch partial ambiguity resolution algorithm[J]. GPS Solutions, 2011, 15(4):391-402. [23] CHAN Fangcheng, JOERGER M, PERVAN B. Stochastic modeling of atomic receiver clock for high integrity GPS navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3):1749-1764. [24] YANG Yang, YUE Xiaokui, YUAN Jianping, et al. Enhancing the kinematic precise orbit determination of low earth orbiters using GPS receiver clock modelling[J]. Advances in Space Research, 2014, 54(9):1901-1912. [25] AC Coordinator, NOAA NGS.[IGSREPORT-24139] Wk 1875 IGS final orbits[EB/OL].[2016-01-04]. https://lists.igs.org/pipermail/igsreport/2016-January/024158.html. |