[1] 姚宜斌, 黄书华, 张良, 等. 求解三维坐标转换参数的整体最小二乘新方法[J]. 武汉大学学报(信息科学版), 2015, 40(7):853-857. YAO Yibin, HUANG Shuhua, ZHANG Liang, et al. A new method of TLS for solving the parameters of three-dimensional coordinate transformation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):853-857. [2] 王乐洋, 郑玄威, 申兴林, 等. 坐标转换Partial-EIV总体最小二乘方法[J]. 测绘工程, 2015, 24(12):12-16. WANG Leyang, ZHENG Xuanwei, SHEN Xinglin, et al. Partial-EIV total least squares method for coordinate transformation[J]. Engineering of Surveying and Mapping, 2015, 24(12):12-16. [3] 刘经南, 曾文宪, 徐培亮. 整体最小二乘估计的研究进展[J]. 武汉大学学报(信息科学版), 2013, 38(5):505-512. LIU Jingnan, ZENG Wenxian, XU Peiliang. Overview of total least squares methods[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):505-512. [4] 曾文宪. 系数矩阵误差对EIV模型平差结果的影响研究[D]. 武汉:武汉大学, 2013:17-19. ZENG Wenxian. Effect of the random design matrix on adjustment of an EIV model and its reliability theory[D]. Wuhan:Wuhan University, 2013:17-19. [5] XU Peiliang, LIU Jingnan, SHI Chuang. Total least squares adjustment in partial errors-in-variables models:Algorithm and statistical analysis[J]. Journal of Geodesy, 2012, 86(8):661-675. [6] 王乐洋, 余航, 陈晓勇. Partial EIV模型的解法[J]. 测绘学报, 2016, 45(1):22-29. DOI:10.11947/j.AGCS.2016.20140560. WANG Leyang, YU Hang, CHEN Xiaoyong. An algorithm for partial EIV model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):22-29. DOI:10.11947/j.AGCS.2016.20140560. [7] FANG Xing. A total least squares solution for geodetic datum transformations[J]. Acta Geodaetica et Geophysica, 2014, 49(2):189-207. [8] FANG Xing. Weighted total least-squares with constraints:a universal formula for geodetic symmetrical transformations[J]. Journal of Geodesy, 2015, 89(5):459-469. [9] JAZAERI S, SCHAFFRIN B, SNOW K. On weighted total least-squares adjustment with multiple constraints and singular dispersion matrices[J]. Zfv, 2014, 139(4):229-240. [10] ZHOU Yongjun, KOU Xinjian, ZHU Jianjun, et al. A Newton algorithm for weighted total least-squares solution to a specific errors-in-variables model with correlated measurements[J]. Studia Geophysica et Geodaetica, 2014, 58(3):349-375. [11] ZHOU Yongjun, KOU Xinjian, LI J, et al. Comparison of structured and weighted total least-squares adjustment methods for linearly structured errors-in-variables models[J]. Journal of Surveying Engineering, 2017, 143(1):04016019. DOI:10.1061/(ASCE)SU.1943-5428.0000190. [12] MAHBOUB V, ARDALAN A A, EBRAHIMZADEH S. Adjustment of non-typical errors-in-variables models[J]. Acta Geodaetica et Geophysica, 2015, 50(2):207-218. [13] AMIRI-SIMKOOEI A R, ZANGENEH-NEJAD F, ASGARI J. On the covariance matrix of weighted total least-squares estimates[J]. Journal of Surveying Engineering, 2016, 142(3):04015013. DOI:10.1061/(ASCE)SU.1943-5428.0000153. [14] WANG Leyang, ZHAO Yingwen. Unscented transformation with scaled symmetric sampling strategy for precision estimation of total least squares[J]. Studia Geophysica et Geodaetica, 2017, 61(3):385-411. [15] FANG Xing. Weighted total least squares:necessary and sufficient conditions, fixed and random parameters[J]. Journal of Geodesy, 2013, 87(8):733-749. [16] NERI F, SAITTA G, CHIOFALO S. An accurate and straightforward approach to line regression analysis of error-affected experimental data[J]. Journal of Physics E:Scientific Instruments, 1989, 22(4):215-217. [17] JAZAERI S, AMIRI-SIMKOOEI A R, SHARIFI M A. Iterative algorithm for weighted total least squares adjustment[J]. Survey Review, 2014, 46(334):19-27. |