[1] GOLUB G H, VAN LOAN C F. An analysis of the total least squares problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893. [2] SCHAFFRIN B, WIESER A. On weighted total least-squares adjustment for linear regression[J]. Journal of Geodesy, 2008, 82(7):415-421. [3] 孔建, 姚宜斌, 吴寒. 整体最小二乘的迭代解法[J]. 武汉大学学报(信息科学版), 2010, 35(6):711-714. KONG Jian, YAO Yibin, WU Han. Iterative method for total least-squares[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6):711-714. [4] 鲁铁定, 周世健. 总体最小二乘的迭代解法[J]. 武汉大学学报(信息科学版), 2010, 35(11):1351-1354. LU Tieding, ZHOU Shijian. An iterative algorithm for total least squares estimation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11):1351-1354. [5] HU C, CHEN Y, ZHU W D. Generalised total least squares solution based on pseudo-observation method[J]. Survey Review, 2016, 48(348):157-167. [6] SHEN Yunzhong, LI Bofeng, CHEN Yi. An iterative solution of weighted total least-squares adjustment[J]. Journal of Geodesy, 2011, 85(4):229-238. [7] XU Peiliang, LIU Jingnan, SHI Chuang. Total least squares adjustment in partial errors-in-variables models:algorithm and statistical analysis[J]. Journal of Geodesy, 2012, 86(8):661-675. [8] FANG Xing. Weighted total least squares:necessary and sufficient conditions, fixed and random parameters[J]. Journal of Geodesy, 2013, 87(8):733-749. [9] LI Bofeng, SHEN Yunzhong, LOU Lizhi. Noniterative datum transformation revisited with two-dimensional affine model as a case study[J]. Journal of Surveying Engineering, 2013, 139(4):166-175. [10] LI Bofeng, SHEN Yunzhong, ZHANG Xingfu, et al. Seamless multivariate affine error-in-variables transformation and its application to map rectification[J]. International Journal of Geographical Information Science, 2013, 27(8):1572-1592. [11] 陈义, 陆珏. 以三维坐标转换为例解算稳健总体最小二乘方法[J]. 测绘学报, 2012, 41(5):715-722. CHEN Yi, LU Jue. Performing 3D similarity transformation by robust total least squares[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):715-722. [12] FANG Xing. A total least squares solution for geodetic datum transformations[J]. Acta Geodaetica et Geophysica, 2014, 49(2):189-207. [13] 李忠美, 边少锋, 瞿勇. 多像空间前方交会的抗差总体最小二乘估计[J]. 测绘学报, 2017, 46(5):593-604. DOI:10.11947/j.AGCS.2017.20160081. LI Zhongmei, BIAN Shaofeng, QU Yong. Robust total least squares estimation of space intersection appropriate for multi-images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5):593-604. DOI:10.11947/j.AGCS.2017.20160081. [14] 王乐洋, 李海燕, 温扬茂, 等. 地震同震滑动分布反演的总体最小二乘方法[J]. 测绘学报, 2017, 46(3):307-315. DOI:10.11947/j.AGCS.2017.20160212. WANG Leyang, LI Haiyan, WEN Yangmao, et al. Total least squares method inversion for coseismic slip distribution[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):307-315. DOI:10.11947/j.AGCS.2017.20160212. [15] FANG Xing. Weighted total least-squares with constraints:a universal formula for geodetic symmetrical transformations[J]. Journal of Geodesy, 2015, 89(5):459-469. [16] FANG Xing. On non-combinatorial weighted total least squares with inequality constraints[J]. Journal of Geodesy, 2014, 88(8):805-816. [17] 曾文宪, 方兴, 刘经南. 附有不等式约束的加权整体最小二乘算法[J]. 测绘学报, 2014, 43(10):1013-1018. DOI:10.13485/j.cnki.11-2089.2014.0173. ZENG Wenxian, FANG Xing, LIU Jingnan. Weighted total least squares algorithm with inequality constraints[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1013-1018. DOI:10.13485/j.cnki.11-2089.2014.0173. [18] 龚循强, 李志林. 稳健加权总体最小二乘法[J]. 测绘学报, 2014, 43(9):888-894, 901. DOI:10.13485/j.cnki.11-2089.2014.0140. GONG Xunqiang, LI Zhilin. A robust weighted total least squares method[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):888-894, 901. DOI:10.13485/j.cnki.11-2089.2014.0140. [19] 王乐洋, 于冬冬. 病态总体最小二乘问题的虚拟观测解法[J]. 测绘学报, 2014, 43(6):575-581. WANG Leyang, YU Dongdong. Virtual observation method to ill-posed total least squares problem[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):575-581. [20] 王乐洋, 于冬冬, 吕开云. 复数域总体最小二乘平差[J]. 测绘学报, 2015, 44(8):866-876. DOI:10.11947/j.AGCS.2015.20130701. WANG Leyang, YU Dongdong, LÜ Kaiyun, et al. Complex total least squares adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):866-876. DOI:10.11947/j.AGCS.2015.20130701. [21] FANG Xing. A structured and constrained total least-squares solution with cross-covariances[J]. Studia Geophysica et Geodaetica, 2014, 58(1):1-16. [22] LEMMERLING P, DE MOOR B, VAN HUFFEL S. On the equivalence of constrained total least squares and structured total least squares[J]. IEEE Transactions on Signal Processing, 1996, 44(11):2908-2911. [23] SCHAFFRIN B, FELUS Y. On total least-squares adjustment with constraints[M]//SANSÒ F. A Window on the Future of Geodesy. Berlin, Heidelberg:Springer, 2005:417-421. [24] SCHAFFRIN B, FELUS Y A. An algorithmic approach to the total least-squares problem with linear and quadratic constraints[J]. Studia Geophysica et Geodaetica, 2009, 53(1):1-16. [25] SCHAFFRIN B. A note on constrained total least-squares estimation[J]. Linear Algebra and its Applications, 2006, 417(1):245-258. [26] 王乐洋. 附有等式约束的加权总体最小二乘平差方法[J]. 东华理工大学学报(自然科学版), 2013, 36(2):245-248. WANG Leyang. Weighted total least squares adjustment with equality constraint[J]. Journal of East China Institute of Technology (Natural Science Edition), 2013, 36(2):245-248. [27] MAHBOUB V, SHARIFI M A. On weighted total least-squares with linear and quadratic constraints[J]. Journal of Geodesy, 2013, 87(3):279-286. [28] 刘国林. 非线性最小二乘与测量平差[M]. 北京:测绘出版社, 2002. LIU Guolin. Nonlinear least squares and measurement adjustment[M]. Beijing:Surveying and Mapping Press, 2002. [29] PEARSON K. LⅢ. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2(11):559-572. [30] YORK D. Least-squares fitting of a straight line[J]. Canadian Journal of Physics, 1966, 44(5):1079-1086. |