[1] 杨元喜, 李金龙, 徐君毅, 等. 中国北斗卫星导航系统对全球PNT用户的贡献[J]. 科学通报, 2011, 56(21):1734-1740. YANG Yuanxi, LI Jinlong, XU Junyi, et al. Contribution of the Compass satellite navigation system to global PNT users[J]. Chinese Science Bulletin, 2011, 56(26):2813-2819. [2] 郭树人, 蔡洪亮, 孟轶男, 等. 北斗三号导航定位技术体制与服务性能[J]. 测绘学报, 2019, 48(7):810-821. DOI:10.11947/j.AGCS.2019.20190091. GUO Shuren, CAI Hongliang, MENG Yinan, et al. BDS-3 RNSS technical characteristics and service performance[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7):810-821. DOI:10.11947/j.AGCS.2019.20190091. [3] TANG Weiming, DENG Chenlong, SHI Chuang, et al. Triple-frequency carrier ambiguity resolution for BeiDou navigation satellite system[J]. GPS Solutions, 2014, 18(3):335-344. [4] ZHANG Xiaohong, HE Xiyang. Performance analysis of triple-frequency ambiguity resolution with BeiDou observations[J]. GPS Solutions, 2016, 20(2):269-281. [5] GENG Jianghui, GUO Jiang, CHANG Hua, et al. Toward global instantaneous decimeter-level positioning using tightly coupled multi-constellation and multi-frequency GNSS[J]. Journal of Geodesy, 2019, 93(7):977-991. [6] LI Bofeng, LI Zhen, ZHANG Zhiteng, et al. ERTK:extra-wide-lane RTK of triple-frequency GNSS signals[J]. Journal of Geodesy, 2017, 91(9):1031-1047. [7] LOU Yidong, GONG Xiaopeng, GU Shengfeng, et al. Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines[J]. GPS Solutions, 2017, 21(1):177-186. [8] 祝会忠. 基于非差误差改正数的长距离单历元GNSS网络RTK算法研究[J]. 测绘学报, 2015, 44(1):116. DOI:10.11947/j.AGCS.2015.20140358. ZHU Huizhong. The study of GNSS network RTK algorithm between long range at single epoch using un-difference error corrections[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1):116. DOI:10.11947/j.AGCS.2015.20140358. [9] 高扬骏, 吕志伟, 周朋进, 等. 北斗中长基线三频模糊度解算的自适应抗差滤波算法[J]. 测绘学报, 2019, 48(3):295-302. DOI:10.11947/j.AGCS.2019.20180379. GAO Yangjun, LV Zhiwei, ZHOU Pengjin, et al. Adaptive robust filtering algorithm for BDS medium and long base line three carrier ambiguity resolution[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3):295-302. DOI:10.11947/j.AGCS.2019.20180379. [10] LI Bofeng, SHEN Yunzhong, FENG Yanming, et al. GNSS ambiguity resolution with controllable failure rate for long baseline network RTK[J]. Journal of Geodesy, 2014, 88(2):99-112. [11] 祝会忠, 刘经南, 唐卫明, 等. 长距离网络RTK基准站间整周模糊度单历元确定方法[J]. 测绘学报, 2012, 41(3):359-365. ZHU Huizhong, LIU Jingnan, TANG Weiming, et al. The algorithm of single-epoch integer ambiguity resolution between long-range network RTK base stations[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3):359-365. [12] 祝会忠, 徐爱功, 高猛, 等. BDS网络RTK中距离参考站整周模糊度单历元解算方法[J]. 测绘学报, 2016, 45(1):50-57. DOI:10.11947/j.AGCS.2016.20140525. ZHU Huizhong, XU Aigong, GAO Meng, et al. The algorithm of single-epoch integer ambiguity resolution between middle-range BDS network RTK reference stations[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):50-57. DOI:10.11947/j.AGCS.2016.20140525. [13] 祝会忠, 李军, 蔚泽然, 等. 长距离GPS/BDS参考站网多频载波相位整周模糊度解算方法[J]. 测绘学报, 2020, 49(3):300-311. DOI:10.11947/j.AGCS.2020.20190191. ZHU Huizhong, LI Jun, YU Zeran, et al. The algorithm of multi-frequency carrier phase integer ambiguity resolution with GPS/BDS between long range network RTK reference stations[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):300-311. DOI:10.11947/j.AGCS.2020.20190191. [14] CHU Fengyu, YANG Ming, WU J. A new approach to modernized GPS phase-only ambiguity resolution over long baselines[J]. Journal of Geodesy, 2016, 90(3):241-254. [15] 张钰玺, 张小红, 刘全海, 等. 航空测量场景下的中长基线动态定位方法[J]. 测绘学报, 2019, 48(7):871-878. DOI:10.11947/j.AGCS.2019.20180513. ZHANG Yuxi, ZHANG Xiaohong, LIU Quanhai, et al. A method of dynamic positioning with the medium and long baseline for aerial measurement scenarios[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7):871-878. DOI:10.11947/j.AGCS.2019.20180513. [16] 李博峰, 沈云中, 周泽波. 中长基线三频GNSS模糊度的快速算法[J]. 测绘学报, 2009, 38(4):296-301. DOI:10.3321/j.issn:1001-1595.2009.04.003. LI Bofeng, SHEN Yunzhong, ZHOU Zebo. A new method for medium and long range three frequency GNSS rapid ambiguity resolution[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4):296-301. DOI:10.3321/j.issn:1001-1595.2009.04.003. [17] ZHANG Ming, LIU Hui, BAI Zhengdong, et al. Fast ambiguity resolution for long-range reference station networks with ionospheric model constraint method[J]. GPS Solutions, 2017, 21(2):617-626. [18] SCHAER S, BEUTLER G, ROTHACHER M, et al. The impact of the atmosphere and other systematic errors on permanent GPS networks[M]//Geodesy Beyond 2000. Berlin Heidelberg:Springer, 2000:373-380. [19] TEUNISSEN P J G. The ionosphere-weighted GPS baseline precision in canonical form[J]. Journal of Geodesy, 1998, 72(2):107-111. [20] TANG Weiming, LIU Wenjian, ZOU Xuan, et al. Improved ambiguity resolution for URTK with dynamic atmosphere constraints[J]. Journal of Geodesy, 2016, 90(12):1359-1369. [21] 毛健, 崔铁军, 李晓丽, 等. 融合大气数值模式的高精度对流层天顶延迟计算方法[J]. 测绘学报, 2019, 48(7):862-870. DOI:10.11947/j.AGCS.2019.20190003. MAO Jian, CUI Tiejun, LI Xiaoli, et al. A hight-accuracy method for tropospheric zenith delay error correction by fusing atmospheric numerical models[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7):862-870. DOI:10.11947/j.AGCS.2019.20190003. [22] YAO Yibin, ZHAO Qingzhi, ZHANG Bin. A method to improve the utilization of GNSS observation for water vapor tomography[J]. Annales Geophysicae, 2016, 34(1):143-152. [23] 赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. ZHAO Qingzhi, YAO Yibin, YAO Wanqiang, et al. A method to improve the utilization rate of satellite rays for three-dimensional water vapor tomography using the ECMWF data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1179-1187. DOI:10.11947/j.AGCS.2018.20170412. [24] FAN Haopeng, SUN Zhongmiao, ZHANG Liping, et al. A two-step estimation method of troposphere delay with consideration of mapping function errors[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):76-84. DOI:10.11947/j.JGGS.2020.0108. [25] YAO Yibin, SUN Zhangyu, XU Chaoqian. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1):1-11. DOI:10.11947/j.JGGS.2020.0101. [26] ZHANG Xiaohong, REN Xiaodong, WU Fengbo, et al. Short-term prediction of ionospheric TEC based on ARIMA Model[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):9-16. DOI:10.11947/j.JGGS.2019.0102. [27] 陈正生, 张清华, 李林阳, 等. 电离层延迟变化自模型化的载波相位平滑伪距算法[J]. 测绘学报, 2019, 48(9):1107-1118. DOI:10.11947/j.AGCS.2019.20180404. CHEN Zhengsheng, ZHANG Qinghua, LI Linyang, et al. An improved carrier phase smoothing pseudorange algorithm with self-modeling of ionospheric delay variation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1107-1118. DOI:10.11947/j.AGCS.2019.20180404. |