[1] 刘经南, 詹骄, 郭迟, 等. 智能高精地图数据逻辑结构与关键技术[J]. 测绘学报, 2019,48(8):939-953. DOI: 10.11947/j.AGCS.2019.20190125. LIU Jingnan, ZHAN Jiao, GUO Chi, et al. Data logic structure and key technologies on intelligent high-precision map[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(8):939-953. DOI: 10.11947/j.AGCS.2019.20190125. [2] 杨必胜, 魏征, 李清泉, 等. 面向车载激光扫描点云快速分类的点云特征图像生成方法[J]. 测绘学报, 2010,39(5):540-545. YANG Bisheng, WEI Zheng, LI Qingquan, et al. A classification-oriented method of feature image generation for vehicle-borne laser scanning point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(5):540-545. [3] 李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019,48(12):1475-1481. DOI: 10.11947/j.AGCS.2019.20190437. LI Deren. Towards geospatial information technology in 5G/6G era[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(12):1475-1481. DOI: 10.11947/j.AGCS.2019.20190437. [4] 杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019,48(12):1575-1585. DOI: 10.11947/j.AGCS.2019.20190465. YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(12):1575-1585. DOI: 10.11947/j.AGCS.2019.20190465. [5] YANG Bisheng, WEI Zheng, LI Qingquan, et al. Automated extraction of street-scene objects from mobile lidar point clouds[J]. International Journal of Remote Sensing, 2012,33(18):5839-5861. [6] 李婷, 詹庆明, 喻亮. 基于地物特征提取的车载激光点云数据分类方法[J]. 国土资源遥感, 2012, 24(1):17-21. LI Ting, ZHAN Qingming, YU Liang. A classification method for mobile laser scanning data based on object feature extraction[J]. Remote Sensing for Land & Resources, 2012, 24(1):17-21. [7] LEHTOMÄKI M, JAAKKOLA A, HYYPPÄ J, et al. Object classification and recognition from mobile laser scanning point clouds in a road environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(2):1226-1239. [8] YU Yongtao, LI J, WEN Chenglu, et al. Bag-of-visual-phrases and hierarchical deep models for traffic sign detection and recognition in mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,113:106-123. [9] XIAO Wen, VALLET B, SCHINDLER K, et al. Street-side vehicle detection, classification and change detection using mobile laser scanning data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,114:166-178. [10] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015,521(7553):436-444. [11] GUAN Haiyan, YU Yongtao, JI Zheng, et al. Deep learning-based tree classification using mobile LiDAR data[J]. Remote Sensing Letters, 2015,6(11):864-873. [12] 罗海峰, 方莉娜, 陈崇成, 等. 基于DBN的车载激光点云路侧多目标提取[J]. 测绘学报, 2018,47(2):234-246. DOI: 10.11947/j.AGCS.2018.20170524. LUO Haifeng, FANG Lina, CHEN Chongcheng, et al. Roadside multiple objects extraction from mobile laser scanning point cloud based on DBN[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(2):234-246. DOI: 10.11947/j.AGCS.2018.20170524. [13] SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 945-953. [14] QI C R, SU Hao, NIEßNER M, et al. Volumetric and multi-view CNNs for object classification on 3D data[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 5648-5656. [15] VISHWANATH K V, GUPTA D, VAHDAT A, et al. ModelNet: Towards a datacenter emulation environment[C]//Proceedings of 2009 IEEE Ninth International Conference on Peer-to-Peer Computing. Seattle, WA, USA: IEEE, 2009: 81-82. [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [17] FENG Yifan, ZHANG Zizhao, ZHAO Xibin, et al. GVCNN: Group-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 264-272. [18] YU Tan, MENG Jingjing, YUAN Junsong. Multi-view harmonized bilinear network for 3D object recognition[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 186-194. [19] CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 77-85. [20] BELLO S A, YU Shangshu, WANG Cheng, et al. Review: deep learning on 3D point clouds[J]. Remote Sensing, 2020, 12(11): 1729.DOI:org/10.3390/rs12111729. [21] QI C R, YI LI, SU HAO, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]//Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, CA, USA:NIPS,2017. [22] JOSEPH-RIVLIN M, ZVIRIN A, KIMMEL R. Momenet: flavor the moments in learning to classify shapes[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE, 2019: 4085-4094. [23] LI Yangyan, BU Rui, SUN Mingchao, et al. PointCNN: convolution on x-transformed points[C]//Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). NowYork, NY, USA: Curran Associates, 2018: 820-830. [24] ZHAO Hengshuang, JIANG Li, FU C W, et al. PointWeb: enhancing local neighborhood features for point cloud processing[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 5560-5568. [25] THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE, 2019: 6410-6419. [26] WANG Yue, SUN Yongbin, LIU Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. [27] QI C R, LIU Wei, WU Chenxia, et al. Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 918-927. [28] YOU Haoxuan, FENG Yifan, JI Rongrong, et al. PVNet: a joint convolutional network of point cloud and multi-view for 3D shape recognition[C]//Proceedings of the 26th ACM international conference on Multimedia. New York, NY, USA: ACM, 2018: 4561-4570. [29] YOU Haoxuan, FENG Yifan, ZHAO Xibin, et al. PVRNet: point-view relation neural network for 3D shape recognition[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence. Palo Alto, California, USA: AAAI, 2019, 33: 9119-9126. [30] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset[J]. The International Journal of Robotics Research, 2013,32(11):1231-1237. [31] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 2432-2443. [32] ZHANG Wuming, QI Jianbo, WAN Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016,8(6):501. [33] REINGOLD O. Undirected connectivity in log-space[J]. Journal of the ACM, 2008,55(4):1-24. [34] YU Y, LI J, GUAN H et al. Automated extraction of 3D trees from mobile LiDAR point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, XL-5: 629-632. [35] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 248-255. [36] ROYNARD X, DESCHAUD J E, GOULETTE F. Paris-Lille-3D: a large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification[J]. The International Journal of Robotics Research, 2018,37(6):545-557. |