[1] HUANG Xin, ZHANG Liangpei, ZHU Tingting. Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1):105-115. [2] 陶峰, 邵振峰. 增强型形态学建筑指数的建筑物变化检测[J]. 测绘科学, 2017, 42(5):29-34. TAO Feng, SHAO Zhenfeng. Building change detection based on the enhanced morphological building index[J]. Science of Surveying and Mapping, 2017, 42(5):29-34. [3] 叶昕, 秦其明, 王俊, 等. 利用高分辨率光学遥感图像检测震害损毁建筑物[J]. 武汉大学学报(信息科学版), 2019, 44(1):125-131. YE Xin, QIN Qiming, WANG Jun, et al. Detecting damaged buildings caused by earthquake from remote sensing image using local spatial statistics method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1):125-131. [4] 李军胜, 党建武, 王阳萍. 多特征融合的高分辨率影像建筑物变化检测[J]. 测绘通报, 2019(10):105-108, 118. DOI:10.13474/j.cnki.11-2246.2019.0328. LI Junsheng, DANG Jianwu, WANG Yangping. Building change detection by multi-feature fusion from high resolution remote sensing images[J]. Bulletin of Surveying and Mapping, 2019(10):105-108, 118. DOI:10.13474/j.cnki.11-2246.2019.0328. [5] HUANG Xin, ZHU Tingting, ZHANG Liangpei, et al. A novel building change index for automatic building change detection from high-resolution remote sensing imagery[J]. Remote Sensing Letters, 2014, 5(8):713-722. [6] 张志强, 张新长, 辛秦川, 等. 结合像元级和目标级的高分辨率遥感影像建筑物变化检测[J]. 测绘学报, 2018, 47(1):102-112. DOI:10.11947/j.AGCS.2018.20170483. ZHANG Zhiqiang, ZHANG Xinchang, XIN Qinchuan, et al. Combining the pixel-based and object-based methods for building change detection using high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):102-112. DOI:10.11947/j.AGCS.2018.20170483. [7] GAO Feng, DONG Junyu, LI Bo, et al. Change detection from synthetic aperture radar images based on Neighborhood-based ratio and extreme learning machine[J]. Journal of Applied Remote Sensing, 2016, 10(4):1-14. [8] TAN Kun, JIN Xiao, PLAZA A, et al. Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8):3439-3451. [9] SIDIKE P, ESSA A, ALBALOOSHI F, et al. Automatic building change detection in wide area surveillance[C]//2015 National Aerospace and Electronics Conference. Dayton, OH:IEEE, 2015:54-57. [10] CHEN Hongruixuan, WU Chen, DU Bo, et al. Deep siamese multi-scale convolutional network for change detection in multi-temporal VHR images[C]//2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images. Shanghai, China:IEEE, 2019:1-4. [11] CHEN Hongruixuan, WU Chen, DU Bo, et al. Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2848-2864. [12] GONG Maoguo, YANG Hailun, ZHANG Puzhao. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129:212-225. [13] WANG Qing, ZHANG Xiaodong, CHEN Guanzhou, et al. Change detection based on Faster R-CNN for high-resolution remote sensing images[J]. Remote Sensing Letters, 2018, 9(10):923-932. [14] 张鑫龙, 陈秀万, 李飞, 等. 高分辨率遥感影像的深度学习变化检测方法[J]. 测绘学报, 2017, 46(8):999-1008. DOI:10.11947/j.AGCS.2017.20170036. ZHANG Xinlong, CHEN Xiuwan, LI Fei, et al. Change detection method for high-resolution remote sensing images using deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):999-1008. DOI:10.11947/j.AGCS.2017.20170036. [15] ZHANG Min, SHI Wenzhong. A feature difference convolutional neural network-based change detection method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10):7232-7246. [16] PENG Daifeng, BRUZZONE L, ZHANG Yongjun, et al. SemiCDNet:a semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020. DOI:10.1109/TGRS.2020.3011913. [17] MOU Lichao, BRUZZONE L, ZHU Xiaoxiang. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):924-935. [18] ZHANG Xinlong, FAN Rui, MA Lei, et al. Change detection in very high-resolution images based on ensemble CNNs[J]. International Journal of Remote Sensing, 2020, 41(12):4757-4779. [19] WESSELS K J, VAN DEN BERGH F, ROY D P, et al. Rapid land cover map updates using change detection and robust random forest classifiers[J]. Remote Sensing, 2016, 8(11):888. [20] 王昶,张永生,韩世静, 等. 基于频域显著性方法和ELM的遥感影像变化检测[J].华中科技大学(自然科学版),2020,48(5):19-24. WANG Chang,ZHANG Yongsheng, HAN Shijing, et al. Remote sensing image change detection based on frequency domain significance method and ELM[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2020,48(5):19-24. [21] HUANG X, ZHANG L P. A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(7):721-732. [22] WANG Zhou, BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3):81-84. [23] 王昶, 张永生, 王旭, 等. 遥感影像条带噪声去除的小波变分法[J]. 测绘学报, 2019, 48(8):1025-1037. DOI:10.11947/j.AGCS.2019.20180394. WANG Chang, ZHANG Yongsheng, WANG Xu, et al. Stripe noise removal of remote image based on wavelet variational method[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):1025-1037. DOI:10.11947/j.AGCS.2019.20180394. [24] WANG Chang, ZHANG Yongsheng, WANG Xu. Coarse-to-fine SAR image change detection method[J]. Remote Sensing Letters, 2019, 10(12):1153-1162. [25] PROKHOROV D. A convolutional learning system for object classification in 3D lidar data[J]. IEEE Transactions on Neural Networks, 2010, 21(5):858-863. |