[1] MATTEOLI S, DIANI M, CORSINI G. A tutorial overview of anomaly detection in hyperspectral images[J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7):5-28. [2] ZHANG Yun. Smart photogrammetric and remote sensing image processing for very high resolution optical images-examples from the CRC-AGIP lab at UNB[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):17-26. DOI:10.11947/j.JGGS.2019.0203. [3] XIE Weiying, JIANG Tao, LI Yunsong, et al. Structure tensor and guided filtering-based algorithm for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4218-4230. [4] DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):101-110. DOI:10.11947/j.JGGS.2019.0211. [5] HUYAN Ning, ZHANG Xiangrong, ZHOU Huiyu, et al. Hyperspectral anomaly detection via background and potential anomaly dictionaries construction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2263-2276. [6] 李敏, 朱国康, 张学武, 等. 基于多孔径映射的高光谱异常检测算法[J]. 测绘学报, 2016, 45(10):1222-1230. DOI:10.11947/j.AGCS.2016.20160119. LI Min, ZHU Guokang, ZHANG Xuewu, et al. An anomaly detector based on multi-aperture mapping for hyperspectral data[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1222-1230. DOI:10.11947/j.AGCS.2016.20160119. [7] LU Xiaoqiang, WANG Yulong, YUAN Yuan. Graph-regularized low-rank representation for destriping of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):4009-4018. [8] KRUSE F A, BOARDMAN J W, HUNTINGTON J F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(6):1388-1400. [9] EISMANN M T, STOCKER A D, NASRABADI N M. Automated hyperspectral cueing for civilian search and rescue[J]. Proceedings of the IEEE, 2009, 97(6):1031-1055. [10] IMANI M. RX anomaly detector with rectified background[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8):1313-1317. [11] KWON H, NASRABADI N M. Kernel RX-algorithm:a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2):388-397. [12] LING Qiang, GUO Yulan, LIN Zaiping, et al. A constrained sparse representation model for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4):2358-2371. [13] SU Hongjun, WU Zhaoyue, DU Qian, et al. Hyperspectral anomaly detection using collaborative representation with outlier removal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12):5029-5038. [14] YUAN Yuan, MA Dandan, WANG Qi. Hyperspectral anomaly detection via sparse dictionary learning method of capped norm[J]. IEEE Access, 2019, 7:16132-16144. DOI:10.1109/ACCESS.2019.2894590. [15] LIU F T, TING Kaiming, ZHOU Zhihua. Isolation forest[C]//Proceedings of 2008 IEEE International Conference on Data Mining. Pisa:IEEE, 2009:413-422. [16] LIU F T, TING Kaiming, ZHOU Zhihua. Isolation-based anomaly detection[J]. Acm Transactions on Knowledge Discovery from Data, 2012, 6(1):1-39. [17] BANDARAGODA T R, TING Kaiming, ALBRECHT D, et al. Efficient anomaly detection by isolation using nearest neighbour ensemble[C]//2014 IEEE International Conference on Data Mining Workshop (ICDMW). Shenzhen:IEEE, 2014:698-705. [18] ZHAO Rui, DU Bo, ZHANG Liangpei, et al. Beyond background feature extraction:an anomaly detection algorithm inspired by slowly varying signal analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1757-1774. [19] 黄鸿, 石光耀, 段宇乐, 等. 加权空-谱联合保持嵌入的高光谱遥感影像降维方法[J]. 测绘学报, 2019, 48(8):1014-1024. DOI:10.11947/j.AGCS.2019.20180229. HUANG Hong, SHI Guangyao, DUAN Yule, et al. Dimensionality reduction method for hyperspectral images based on weighted spatial-spectral combined preserving embedding[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8):1014-1024. DOI:10.11947/j.AGCS.2019.20180229. [20] HARSANYI J C, CHANG C I. Hyperspectral image classification and dimensionality reduction:an orthogonal subspace projection approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):779-785. [21] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5):1062-1090. ZHANG Bing. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090. [22] KHOUJ Y, DAWSON J, COAD J, et al. Hyperspectral imaging and k-means classification for histologic evaluation of ductal carcinoma in situ[J]. Frontiers in Oncology, 2018, 8:17. DOI:10.3389/fonc.2018.00017. [23] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720. [24] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. [25] KANG Xudong, ZHANG Xiangping, LI Shutao, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5600-5611. [26] 黄远程, 钟燕飞, 赵野鹤, 等. 联合盲分解与稀疏表达的高光谱图像异常目标检测[J]. 武汉大学学报(信息科学版), 2015, 40(9):1144-1150. HUANG Yuancheng, ZHONG Yanfei, ZHAO Yehe, et al. Joint blind unmixing and sparse representation for anomaly detection in hyperspectral image[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1144-1150. [27] WU Yuanfeng, LÓPEZ S, ZHANG Bing, et al. Approximate computing for onboard anomaly detection from hyperspectral images[J]. Journal of Real-Time Image Processing, 2019, 16(1):99-114. [28] 马春笑, 黄远程, 胡荣明, 等. 多窗口融合判别子空间的高光谱图像异常检测[J]. 应用科学学报, 2019, 37(1):64-72. MA Chunxiao, HUANG Yuancheng, HU Rongming, et al. Discriminant subspace and multi-window fusion RX algorithm for hyperspectral image anomaly detection[J]. Journal of Applied Sciences, 2019, 37(1):64-72. [29] ZHANG Yuxiang, KE Wu, DU Bo, et al. Independent encoding joint sparse representation and multitask learning for hyperspectral target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11):1933-1937. |