[1] 黄鸿, 郑新磊. 高光谱影像空-谱协同嵌入的地物分类算法[J]. 测绘学报, 2016, 45(8):964-972. DOI:10.11947/j.AGCS.2016.20150654. HUANG Hong, ZHENG Xinlei. Hyperspectral image land cover classification algorithm based on spatial-spectral coordination embedding[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8):964-972. DOI:10.11947/j.AGCS.2016.20150654. [2] CASA R, UPRETI D, PALOMBO A, et al. Evaluation and exploitation of retrieval algorithms for estimating biophysical crop variables using Sentinel-2, Venus, and PRISMA satellite data[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4):79-88. DOI:10.11947/j.JGGS.2020.0408. [3] 杨钊霞, 邹峥嵘, 陶超, 等. 空-谱信息与稀疏表示相结合的高光谱遥感影像分类[J]. 测绘学报, 2015, 44(7):775-781. DOI:10.11947/j.AGCS.2015.20140207. YANG Zhaoxia, ZOU Zhengrong, TAO Chao, et al. Hyperspectral image classification based on the combination of spatial-spectral feature and sparse representation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7):775-781. DOI:10.11947/j.AGCS.2015.20140207. [4] SUN Weiwei, DU Qian. Graph-regularized fast and robust principal component analysis for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):3185-3195. [5] GAO Peichao, WANG Jicheng, ZHANG Hong, et al. Boltzmann entropy-based unsupervised band selection for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3):462-466. [6] SAWANT S S, MANOHARAN P. Unsupervised band selection based on weighted information entropy and 3D discrete cosine transform for hyperspectral image classification[J]. International Journal of Remote Sensing, 2020, 41(10):3948-3969. [7] CHANG C I, DU Qian, SUN T L, et al. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6):2631-2641. [8] CHANG C I, WANG Su. Constrained band selection for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6):1575-1585. [9] MARTÍNEZ-USÓMARTINEZ-USO A, PLA F, SOTOCA J M, et al. Clustering-based hyperspectral band selection using information measures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12):4158-4171. [10] GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):1-15. DOI:10.11947/j.JGGS.2018.0101. [11] ZENG Meng, CAI Yaoming, CAI Zhihua, et al. Unsupervised hyperspectral image band selection based on deep subspace clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12):1889-1893. [12] 曾梦, 宁彬, 蔡之华, 等. 使用深度对抗子空间聚类实现高光谱波段选择[J]. 计算机应用, 2020, 40(2):381-385. ZENG Meng, NING Bin, CAI Zhihua, et al. Hyperspectral band selection based on deep adversarial subspace clustering[J]. Journal of Computer Applications, 2020, 40(2):381-385. [13] CAI Yaoming, LIU Xiaobo, CAI Zhihua. BS-Nets:an end-to-end framework for band selection of hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1969-1984. [14] 严阳, 华文深, 刘恂, 等. 基于高光谱基本准则的波段选择方法[J]. 光学技术, 2018, 44(5):634-640. YAN Yang, HUA Wenshen, LIU Xun, et al. Band selection method based on hyperspectral fundamental criterion[J]. Optical Technique, 2018, 44(5):634-640. [15] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3):379-423. [16] 李志林, 刘启亮, 高培超. 地图信息论:从狭义到广义的发展回顾[J]. 测绘学报, 2016, 45(7):757-767. DOI:10.11947/j.AGCS.2016.20160235. LI Zhilin, LIU Qiliang, GAO Peichao. Entropy-based cartographic communication models:evolution from special to general cartographic information theory[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):757-767. DOI:10.11947/j.AGCS.2016.20160235. [17] LI Zhilin, HUANG Peizhi. Quantitative measures for spatial information of maps[J]. International Journal of Geographical Information Science, 2002, 16(7):699-709. [18] CAO Xianghai, HAN Jungong, YANG Shuyuan, et al. Band selection and evaluation with spatial information[J]. International Journal of Remote Sensing, 2016, 37(19):4501-4520. [19] CUSHMAN S A. Calculating the configurational entropy of a landscape mosaic[J]. Landscape Ecology, 2016, 31(3):481-489. [20] GAO Peichao, ZHANG Hong, LI Zhilin. A hierarchy-based solution to calculate the configurational entropy of landscape gradients[J]. Landscape Ecology, 2017, 32(6):1133-1146. [21] ZHAO Yuan, ZHANG Xinchang. Calculating spatial configurational entropy of a landscape mosaic based on the Wasserstein metric[J]. Landscape Ecology, 2019, 34(8):1849-1858. [22] SUKHOV V I. Information capacity of a map entropy[J]. Geodesy and Aerophotography, 1967, 10(4):212-215. [23] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973(6):610-621. [24] BOLTZMANN L. Weitere studien über das wärmegleichge-wicht unter gasmolekülen[M]. Sitzungsberichte Akademie der Wissenschaften, 1872, 66:275-370. [25] ZHANG Mingyang, GONG Maoguo, MAO Yishun, et al. Unsupervised feature extraction in hyperspectral images based on Wasserstein generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5):2669-2688. [26] ESTEVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks, 2009, 20(2):189-201. [27] VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison:Variants, properties, normalization and correction for chance[J]. Journal of Machine Learning Research, 2010, 11(1):2837-2854. [28] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. Annals of Mathematical Statistics, 1951, 22(1):79-86. [29] 邬建国. 景观生态学——格局、过程、尺度与等级[M]. 2版. 北京:高等教育出版社, 2007:125-147. WU Jianguo. Landscape ecology:pattern, process, scale and hierarchy[M]. 2nd ed. Beijing:Higher Education Press, 2007:125-147. [30] HENEBRY G M. Spatial model error analysis using autocorrelation indices[J]. Ecological Modelling, 1995, 82(1):75-91. [31] BAUMGARDNER M F, BIEHL L L, LANDGREBE D A. 220 band aviris hyperspectral image data set:June 12, 1992 Indian pine test site 3[J]. Purdue University Research Repository, 2015. [32] GEGE P, BERAN D, MOOSHUBER W, et al. System analysis and performance of the new version of the imaging spectrometer ROSIS[C]//Proceedings of the 1st EARSel Workshop on Imaging Spectroscopy Remote Sensing Laboratories. 1998:29-35. [33] 魏立飞, 余铭, 钟燕飞, 等. 空-谱融合的条件随机场高光谱影像分类方法[J]. 测绘学报, 2020, 49(3):343-354. DOI:10.11947/j.AGCS.2020.20190042. WEI Lifei, YU Ming, ZHONG Yanfei, et al. Hyperspectral image classification method based on space-spectral fusion conditional random field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):343-354. DOI:10.11947/j.AGCS.2020.20190042. |