[1] 苏河源, 胡兆璋. 国外地面沉降研究状况述评[J]. 上海地质, 1980(2):65-77. SU Heyuan, HU Zhaozhang. A review of land subsidence research abroad[J]. Shanghai Geology, 1980(2):65-77. [2] 任连伟, 周桂林, 顿志林, 等. 采空区建筑地基适宜性及沉降变形计算工程实例分析[J]. 岩土力学, 2018, 39(8):2922-2932, 2940. REN Lianwei, ZHOU Guilin, DUN Zhilin, et al. Case study on suitability and settlement of foundation in goaf site[J]. Rock and Soil Mechanics, 2018, 39(8):2922-2932, 2940. [3] CHEN Mi, TOMÁ S R, LI Zhenhong, et al. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry[J]. Remote Sensing,2016, 8(6):468. [4] THINH H P, STROKOVA L A. Prediction maps of land subsidence caused by groundwater exploitation in Hanoi, Vietnam[J]. Resource-Efficient Technologies, 2015, 1(2):80-89. [5] ZHANG Yuanliang, ZHANG Yihu. Land subsidence prediction method of power cables pipe jacking based on the peck theory[J]. Advanced Materials Research, 2013, 634-638:3721-3724. [6] SHEARER T R. A numerical model to calculate land subsidence, applied at Hangu in China[J].Engineering Geology,1998, 49(2):85-93. [7] WANG Yue, YANG Guang. Prediction of composite foundation settlement based on multi-variable gray model[J]. Applied Mechanics and Materials, 2014, 580-583:669-673. [8] LI Peixian, TAN Zhixiang, YAN Lili, et al. Building settlement forecast based on BP neural network[C]//Proceedings of 2011 International Conference on Electric Technology and Civil Engineering.Lushan, China:IEEE, 2011:2024-2027. [9] GAO Hui, SONG Qichao, HUANG Jun. Subgrade settlement prediction based on least square support vector regession and real-coded quantum evolutionary algorithm[J]. International Journal of Grid and Distributed Computing, 2016, 9(7):83-90. [10] SHAHIN M A, MAIER H R, JAKSA M B. Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models[J]. Computers and Geotechnics, 2003, 30(8):637-647. [11] 岳荣花. 小波神经网络在沉降预测中的应用研究[D]. 南京:河海大学, 2007. YUE Ronghua. The application of wavelet neural network in settlement prediction[D]. Nanjing:Hohai University, 2007. [12] WANG Yinghua, XU Chang. Using genetic artificial neural network to model dam monitoring data[C]//Proceedings of 2010 Second International Conference on Computer Modeling and Simulation. Sanya, Hainan, China:IEEE, 2010. [13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.Red Hook, NY:Curran Associates Inc., 2012. [14] ZHOU Pan, LIU Cong, LIU Qingfeng, et al. A cluster-based multiple deep neural networks method for large vocabulary continuous speech recognition[C]//Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.Vancouver, BC, Canada:IEEE, 2013. [15] SUN Yi, CHEN Yuheng, WANG Xiaogang, et al. Deep Learning Face Representation by Joint Identification-Verification[J]. Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge, MA:MIT Press, 2014. [16] GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget:continual prediction with LSTM[J]. Neural Computation, 2000, 12(10):2451-2471. [17] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [18] GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5-6):602-610. [19] 贾澎涛, 何华灿, 刘丽, 等. 时间序列数据挖掘综述[J]. 计算机应用研究, 2007, 24(11):15-18, 29. JIA Pengtao, HE Huacan, LIU Li, et al. Overview of time series data mining[J]. Application Research of Computers, 2007,24(11):15-18, 29. [20] KINGMA D, BA J. ADAM:a method for stochastic optimization[J]. Computer Science, 2014. [21] DUCHI J C, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7):257-269. [22] TIELEMAN T, HINTON G. Lecture 6.5-RMSProp:divide the gradient by a running average of its recent magnitude[J].COURSERA:Neural Networks for Machine Learning,2012, 4(2):26-31. [23] WEN Quan. Spare parts demand prediction research of navigation marks based on the method of quadratic exponential smoothing[C]//Proceedings of the 7th International Conference on Applied Science,Engineering and Technology (ICASET 2017).[S.l.]:Atlantis Press,2017. [24] PERCIVAL D B. Spectral analysis for physical applications[M]. Cambridge:Cambridge University Press, 1993. [25] BOX G E P, JENKINS G M. Time series analysis:forecasting and control[J]. Journal of Time, 2010, 31(3):303-303. [26] NIKOLOPOULOS K, GOODWIN P, PATELIS A, et al. Forecasting with cue information:a comparison of multiple regression with alternative forecasting approaches[J]. European Journal of Operational Research, 2007, 180(1):354-368. [27] ZHOU Hongyue, WANG Yunjia, YAN Shiyong, et al. Monitoring of recent ground surface subsidence in the Guangzhou region by the use of InSAR time-series technique with multi-orbit Sentinel-1 TOPS imagery[J]. International Journal of Remote Sensing, 2018, 39(21-22):8113-8128. [28] 张永红, 刘冰, 吴宏安, 等. 雄安新区2012~2016年地面沉降InSAR监测[J]. 地球科学与环境学报, 2018, 40(5):152-162. ZHANG Yonghong, LIU Bing, WU Hongan, et al. Ground subsidence in Xiong'an New Area from 2012 to 2016 monitored by InSAR technique[J]. Journal of Earth Sciences and Environment, 2018, 40(5):152-162. [29] 佚名.CH/T 6006-2018《时间序列InSAR地表形变监测数据处理规范》概述[J]. 测绘标准化, 2019, 35(2):24. Anonymous.CH/T 6006-2018"time series InSAR surface deformation monitoring data processing specification" overview[J]. Standardization of Surveying and Mapping, 2019, 35(2):24. [30] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1717-1733. DOI:10.11947/j.AGCS.2017.20170350. |