[1] 王家耀, 李志林, 武芳. 数字地图综合进展[M]. 北京: 科学出版社, 2011. WANG Jiayao, LI Zhilin, WU Fang. Advances in digital map generalization[M]. Beijing: Science Press, 2011. [2] BADER M. Energy minimization methods for feature displacement in map generalization[D]. Switzerland: University of Zurich, 2001. [3] 艾廷华. 基于场论分析的建筑物群的移位[J]. 测绘学报, 2004, 33(1): 89-94. AI Tinghua. A displacement of building cluster based on field analysis[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(1): 89-94. [4] 吴小芳, 杜清运, 徐智勇. 多层次移位原则的道路与建筑物空间冲突处理[J]. 测绘学报, 2010, 39(6): 649-654. WU Xiaofang, DU Qingyun, XU Zhiyong. Disposal of spatial conflict between roads and buildings based on the multilevel displacement principles[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6): 649-654. [5] 孙雅庚. 建筑物群与道路空间冲突解决的移位方法研究[D]. 武汉: 武汉大学, 2015. SUN Yageng. The displacement method research of conflict solution relate to buildings and roads[D]. Wuhan: Wuhan University, 2015. [6] 刘远刚. 基于能量最小化原理的地图要素移位算法研究与改进[D]. 武汉: 武汉大学, 2015. LIU Yuangang. Research and improvement of cartographic displacement algorithms based on energy minimization principles[D]. Wuhan: Wuhan University, 2015. [7] BURGHARDT D, MEIER S. Cartographic displacement using the snakes concept[C]//FÖRSTNER W, PLVMER L. Semantic Modeling for the Acquisition of Topographic Information from Images and Maps. Basel: Birkhaeuser Verlag, 1997: 59-71. [8] BOBRICH J. Cartographic displacement by minimization of spatial and geometric conflicts[C]//Proceedings of the 20th International Cartographic Conference. Beijing: [s.n.], 2001: 2032-2042. [9] BURGHARDT D, MEIER S. Cartographic displacement using the snakes concept[C]//FÖRSTNER W, PLVMER L.Semantic Modeling for the Acquisition of Topographic Information from Images and Maps. Basel: Birkhaeuser Verlag, 1997: 114-120. [10] HARRIE L E. The constraint method for solving spatial conflicts in cartographic generalization[J]. Cartography and Geographic Information Science, 1999, 26(1): 55-69. [11] HØJHOLT P. Solving space conflicts in map generalization: using a finite element method[J]. Cartography and Geographic Information Science, 2000, 27(1): 65-74. [12] WARE J M, JONES C B. Conflict reduction in map generalization using iterative improvement[J]. GeoInformatica, 1998, 2(4): 383-407. [13] WARE J M, JONES C B, THOMAS N. Automated map generalization with multiple operators: a simulated annealing approach[J]. International Journal of Geographical Information Science, 2003, 17(8): 743-769. [14] MACKANESS W A, PURVES R S. Automated displacement for large numbers of discrete map objects[J]. Algorithmica, 2001, 30(2): 302-311. [15] LONERGAN M, JONES C B. An iterative displacement method for conflict resolution in map generalization[J]. Algorithmica, 2001, 30(2): 287-301. [16] WARE J M, WILSON I D, WARE J A,et al. A tabu search approach to automated map generalisation[C]//Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems. New York, NY:ACM, 2002: 101-106. [17] WILSON I D, WARE J M, WARE J A. A genetic algorithm approach to cartographic map generalisation[J]. Computers in Industry, 2003, 52(3): 291-304. [18] SUN Yageng, GUO Qingsheng, LIU Yuangang,et al. An immune genetic algorithm to buildings displacement in cartographic generalization[J]. Transactions in GIS, 2016, 20(4), 585-612. [19] HUANG Hesheng, GUO Qingsheng, SUN Yageng, et al. Reducing building conflicts in map generalization with an improved PSO algorithm[J]. ISPRS International Journal of Geo-Information, 2017, 6(5): 127. [20] LI Wende, AI Tinghua, SHEN Yilang, et al. A novel method for building displacement based on multipopulation genetic algorithm[J]. Applied Sciences, 2020, 10(23): 8441. DOI: 10.3390/app10238441. [21] 陈占龙, 叶文. 复杂面实体拓扑关系的精细化模型[J]. 测绘学报, 2019, 48(5): 630-642. DOI: 10.11947/j.AGCS.2019.20170531. CHEN Zhanlong, YE Wen. The precise model of complex planar objects’ topological relations[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5): 630-642. DOI: 10.11947/j.AGCS.2019.20170531. [22] ZHANG Lihua, TANG Lulu, JIA Shuaidong, et al. A collaborative simplification method for multiple coastlines based on the hierarchical triangulation network partition[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 93-104. DOI: 10.11947/j.JGGS.2020.0210. [23] AI Tinghua, ZHANG Xiang, ZHOU Qi, et al. A vector field model to handle the displacement of multiple conflicts in building generalization[J]. International Journal of Geographical Information Science, 2015, 29(8): 1310-1331. DOI: 10.1080/13658816.2015.1019886. [24] LIU Yuangang, GUO Qingsheng, SUN Yageng, et al. A combined approach to cartographic displacement for buildings based on skeleton and improved elastic beam algorithm[J]. PLoS One, 2014, 9(12): e113953. DOI: 10.1371/journal.pone.0113953. [25] CONS A. Constraint analysis(DA2)[R]. The Agent Project, Esprit/LTR/24 939, 2001. [26] Swiss Society of Cartography. Topographic maps: map graphics and generalization[M]. Berne: Federal Office of Topography, 2005. [27] 刘远刚, 郭庆胜, 蔡永香, 等. 基于CDT骨架线的地图目标邻近冲突识别[J]. 测绘工程, 2017, 26(8): 10-13, 19. LIU Yuangang, GUO Qingsheng, CAI Yongxiang, et al. Identifying proximity conflicts of map objects based on CDT skeleton[J]. Engineering of Surveying and Mapping, 2017, 26(8): 10-13, 19. [28] 国家测绘局测绘标准化研究所. GB/T 20257.3—2006 国家基本比例尺地图图式 第3部分: 1∶25000 1∶ 50000 1∶ 100000地形图图式[S]. 北京: 中国标准出版社, 2006. National Administration of Surveying, Mapping and Geoinformation of China. GB/T 20257.3—2006 Cartographic symbols for national fundamental scale maps—Part 3: Specifications for cartographic symbols 1∶25000 1∶50000 & 1∶100000 topographic maps[S]. Beijing: Standards Press of China, 2006. [29] 郭庆胜, 李国贤, 王勇, 等. 直线排列建筑物群渐进式典型化方法[J]. 测绘学报, 2020, 49(10): 1354-1364. DOI: 10.11947/j.AGCS.2020.20190495. GUO Qingsheng, LI Guoxian, WANG Yong, et al. The method of progressive typification for building groups with straight linear patterns[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1354-1364. DOI: 10.11947/j.AGCS.2020.20190495. [30] ZHANG Xiang, AI Tinghua, STOTER J, et al. Building pattern recognition in topographic data: examples on collinear and curvilinear alignments[J]. Geoinformatica, 2013, 17(1): 1-33. [31] 王煦法, 张显俊, 曹先彬, 等. 一种基于免疫原理的遗传算法[J]. 小型微型计算机系统, 1999, 20(2): 117-120. WANG Xufa, ZHANG Xianjun, CAO Xianbin, et al. An improved genetic algorithm based on immune principle[J]. Mini-Micro Systems, 1999, 20(2): 117-120. |