Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (6): 923-934.doi: 10.11947/j.AGCS.2022.20220069
• Geodesy and Navigation • Previous Articles Next Articles
SUN Zhongmiao1,2, GUAN Bin1,2, ZHAI Zhenhe1,2, OUYANG Mingda1,2
Received:2022-02-08
Revised:2022-03-21
Published:2022-07-02
Supported by:CLC Number:
SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934.
| [1] FU L L, CAZENAVE A. Satellite altimetry and earth sciences:a handbook of techniques and applications[M]. San Diego:Academic Press, 2001. [2] ABDALLA S, KOLAHCHI A A, ABLAIN M, et al. Altimetry for the future:building on 25 years of progress[J]. Advances in Space Research, 2021, 68(2):319-363. [3] GRGIĆ M, BAŠIĆ T. Radar satellite altimetry in geodesy-theory, applications and recent developments[M]//EROL B, EROL S. Geodetic Sciences-Theory, Applications and Recent Developments. London:IntechOpen, 2021. [4] 李建成, 金涛勇. 卫星测高技术及应用若干进展[J]. 测绘地理信息, 2013, 38(4):1-8. LI Jincheng, JIN Taoyong. On the main progress of satellite altimetry and its applications[J]. Journal of Geomatics, 2013, 38(4):1-8. [5] PEROSANZ F, MARTY J C, BALMINO G. Dynamic orbit determination and gravity field model improvement from GPS, DORIS and laser measurements on TOPEX/POSEIDON satellite[J]. Journal of Geodesy, 1997, 71(3):160-170. [6] STENSENG L. Polar remote sensing by cryosat-type radar altimetry[D]. Copenhagen:DTU Space, 2011. [7] VERRON J, BONNEFOND P, ANDERSEN O, et al. The SARAL/AltiKa mission:a step forward to the future of altimetry[J]. Advances in Space Research, 2021, 68(2):808-828. [8] MECKLENBURG S, DRANSFELD S, GASCON F, et al. ESA's Sentinel-3 mission-status and performance[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain:IEEE, 2018:3917-3919. [9] DONLON C J, CULLEN R, GIULICCHI L, et al. The copernicus Sentinel-6 mission:enhanced continuity of satellite sea level measurements from space[J]. Remote Sensing of Environment, 2021, 258:112395. [10] MEDVEDEV P P, LEBEDEV S A, TYUPKIN Y S, et al. An integrated satellite altimetry database and final results of the Russian altimetry data processing[C]//Proceedings of the 2nd Joint Meeting of the IGC/IGeC. Trieste, Italy:[s.n.], 1999. [11] SANDWELL D T. A detailed view of the south pacific geoid from satellite altimetry[J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B2):1089-1104. [12] RAPP R H. The determination of geoid undulations and gravity anomalies from SEASAT altimeter data[J]. Journal of Geophysical Research:Oceans, 1983, 88(C3):1552-1562. [13] RAPP R H. Geos 3 data processing for the recovery of geoid undulations and gravity anomalies[J]. Journal of Geophysical Research:Solid Earth, 1979, 84(B8):3784-3792. [14] MARKS K M. Resolution of the Scripps/NOAA marine gravity field from satellite altimetry[J]. Geophysical Research Letters, 1996, 23(16):2069-2072. [15] SANDWELL D T, SMITH W H F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B5):10039-10054. [16] ANDERSEN O B, KNUDSEN P. Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry[J]. Journal of Geophysical Research:Oceans, 1998, 103(C4):8129-8137. [17] ANDERSEN O B, KNUDSEN P, TRIMMER R. Improved high resolution altimetric gravity field mapping (KMS2002 global marine gravity field)[C]//Proceedings of 2005 International Association of Geodesy IAG General Assembly. Sapporo:Springer, 2005:326-331. [18] ANDERSEN O B, ZHANG S J, SANDWELL D T, et al. The unique role of the Jason geodetic missions for high resolution gravity field and mean sea surface modelling[J]. Remote Sensing, 2021, 13(4):646. [19] ANDERSEN O B, KNUDSEN P. The DTU17 global marine gravity field:first validation results[C]//Proceedings of 2020 International Review Workshop on Satellite Altimetry Cal/Val Activities and Applications. Cham:Springer, 2020:83-87. [20] SANDWELL D T, HARPER H, TOZER B, et al. Gravity field recovery from geodetic altimeter missions[J]. Advances in Space Research, 2021, 68(2):1059-1072. [21] 王虎彪, 王勇, 陆洋, 等. 联合多种测高数据确定中国海及其邻域1.5'×1.5'重力异常[J]. 武汉大学学报(信息科学版), 2008, 33(12):1292-1295. WANG Hubiao, WANG Yong, LU Yang, et al. Gravity anomalies with resolution of 1.5'×1.5' over China sea and its vicinity derived from multi-satellite altimeter[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1292-1295. [22] 李建成, 宁津生, 陈俊勇, 等. 中国海域大地水准面和重力异常的确定[J]. 测绘学报, 2003, 32(2):114-119. LI Jiancheng, NING Jinsheng, CHEN Junyong, et al. Geoid determination in China sea areas[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(2):114-119. [23] 黄谟涛, 翟国君, 管铮, 等. 利用卫星测高数据反演海洋重力异常研究[J]. 测绘学报, 2001, 30(2):179-184. HUANG Motao, ZHAI Guojun, GUAN Zheng, et al. On the recovery of gravity anomalies from altimeter data[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(2):179-184. [24] 许厚泽, 王海瑛, 陆洋, 等. 利用卫星测高数据推求中国近海及邻域大地水准面起伏和重力异常研究[J]. 地球物理学报, 1999, 42(4):465-471. XU Houze, WANG Haiying, LU Yang, et al. Geoid undulations and gravity anomalies from T/P and ERS-1 altimeter data in the China sea and vicinity[J]. Chinese Journal of Geophysics, 1999, 42(4):465-471. [25] ZHU Chengcheng, GUO Jinyun, GAO Jinyao, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea:SCSGA V1.0[J]. Journal of Geodesy, 2020, 94(5):50. [26] 张胜军. 利用多源卫星测高资料确定海洋重力异常的研究[J]. 测绘学报, 2017, 46(8):1071. DOI:10.11947/j.AGCS.2017.20170187. ZHANG Shengjun. Research on determination of marine gravity anomalies from multi-satellite altimeter data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):1071. DOI:10.11947/j.AGCS.2017.20170187. [27] 张胜军, 李建成, 孔祥雪. 基于Laplace方程的垂线偏差法反演全球海域重力异常[J]. 测绘学报, 2020, 49(4):452-460. ZHANG Shengjun, LI Jiancheng, KONG Xiangxue. Inversion of global marine gravity anomalies with vertical deflection method deduced from Laplace equation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):452-460. [28] ANDERSEN O B, KNUDSEN P, KENYON S, et al. The DTU13 global marine gravity field-first evaluation[C]//Proceedings of 2013 Ocean Surface Topography Science Team Meeting. Boulder, Colorado:[s.n.], 2013. [29] ANDERSEN O B, KNUDSEN P, KENYON S, et al. Global gravity field from recent satellites (DTU15)-Arctic improvements[J]. First Break, 2017, 35(12):37-40. [30] SANDWELL D T, MVLLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205):65-67. [31] WÖLFL A C, SNAITH H, AMIREBRAHIMI S, et al. Seafloor mapping-the challenge of a truly global ocean bathymetry[J]. Frontiers in Marine Science, 2019, 6:283. [32] DIXON T H, NARAGHI M, MCNUTT M K, et al. Bathymetric prediction from SEASAT altimeter data[J]. Journal of Geophysical Research:Oceans, 1983, 88(C3):1563-1571. [33] HAXBY W F, KARNER G D, LABRECQUE J L, et al. Digital images of combined oceanic and continental data sets and their use in tectonic studies[J]. Eos, Transactions American Geophysical Union, 1983, 64(52):995-1004. [34] SMITH W H F, SANDWELL D T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry[J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B11):21803-21824. [35] 赵建虎, 欧阳永忠, 王爱学. 海底地形测量技术现状及发展趋势[J]. 测绘学报, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS.2017.20170276. ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1786-1794. DOI:10.11947/j.AGCS.2017.20170276. [36] AMANTE C, EAKINS B W. ETOPO1 arc-minute global relief model:procedures, data sources and analysis[R]. Boulder, Colorado:National Geophysical Data Center, Marine Geology and Geophysics Division, 2009. [37] BECKER J J, SANDWELL D T, SMITH W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution:SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4):355-371. [38] TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arc sec:SRTM15+[J]. Earth and Space Science, 2019, 6(10):1847-1864. [39] WEATHERALL P, MARKS K M, JAKOBSSON M, et al. A new digital bathymetric model of the world's oceans[J]. Earth and Space Science, 2015, 2(8):331-345. [40] 胡敏章, 李建成, 邢乐林. 由垂直重力梯度异常反演全球海底地形模型[J]. 测绘学报, 2014, 43(6):558-565, 574. DOI:10.13485/jc.nki1.1-20892.0140.090. HU Minzhang, LI Jiancheng, XING Lelin. Global bathymetry model predicted from vertical gravity gradient anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):558-565, 574. DOI:10.13485/jc.nki1.1-20892.0140.090. [41] 胡敏章, 张胜军, 金涛勇, 等. 新一代全球海底地形模型BAT_WHU2020[J]. 测绘学报, 2020, 49(8):939-954. HU Minzhang, ZHANG Shengjun, JIN Taoyong, et al. A new generation of global bathymetry model BAT_WHU2020[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8):939-954. [42] RANEY R K. The delay/Doppler radar altimeter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5):1578-1588. [43] BOY F, DESJONQUÈRES J D, PICOT N, et al. CryoSat-2 SAR-mode over oceans:processing methods, global assessment, and benefits[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):148-158. [44] 王磊. 高精度卫星雷达高度计数据处理技术研究[D]. 北京:中国科学院大学, 2015. WANG Lei. Study on the data processing for high precision satellite radar altimeter[D]. Beijing:University of Chinese Academy of Sciences, 2015. [45] SMITH W H F. Resolution of seamount geoid anomalies achieved by the SARAL/AltiKa and envisat RA2 satellite radar altimeters[J]. Marine Geodesy, 2015, 38(S1):644-671. [46] MARKS K M, SMITH W H F. Detecting small seamounts in AltiKa repeat cycle data[J]. Marine Geophysical Research, 2016, 37(4):349-359. [47] MARKS K M, SMITH W H F. A method of stacking AltiKa repeat cycle data that may reveal 75,000+ possible small seamounts[J]. Earth and Space Science, 2018, 5(12):964-969. [48] FU L L, ALSDORF D, MORROW R, et al. SWOT:the surface water and ocean topography mission-wide-swath altimetric measurement of water elevation on earth[R]. Pasadena, CA:Jet Propulsion Laboratory, California Institute of Technology, 2012, PP228. [49] FERNANDEZ D E, FU L L, POLLARD B, et al. SWOT project:mission performance and error budget[R]. Washington, NASA, 2017. [50] YU Daocheng, HWANG C W, ANDERSEN O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265:112650. [51] 陈洁好, 张云华, 董晓. 天宫二号三维成像微波高度计大气斜距时延校正[J]. 遥感学报, 2020, 24(9):1059-1069. CHEN Jiehao, ZHANG Yunhua, DONG Xiao. Correction of the tropospheric slant path delay of Tiangong-2 interferometric imaging radar altimeter[J]. Journal of Remote Sensing, 2020, 24(9):1059-1069. [52] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS):application to ocean altimetry[J]. ESA Journal, 1993, 17(4):331-355. [53] LOWE S T, LABRECQUE J L, ZUFFADA C, et al. First spaceborne observation of an earth-reflected GPS signal[J]. Radio Science, 2002, 37(1):1007. [54] CLARIZIA M P, GOMMENGINGER C P, GLEASON S T, et al. Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean[J]. Geophysical Research Letters, 2009, 36(2):L02608. [55] UNWIN M, JALES P, TYE J, et al. Spaceborne GNSS-reflectometry on TechDemoSat-1:early mission operations and exploitation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10):4525-4539. [56] CARRENO-LUENGO H, LOWE S, ZUFFADA C, et al. Spaceborne GNSS-R from the SMAP mission:first assessment of polarimetric scatterometry over land and cryosphere[J]. Remote Sensing, 2017, 9(4):362. [57] LI Weiqiang, CARDELLACH E, FABRA F, et al. Assessment of spaceborne GNSS-R ocean altimetry performance using CYGNSS mission raw data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1):238-250. [58] NGUYEN V A, NOGUOS-CORREIG O, YUASA T, et al. Initial GNSS phase altimetry measurements from the spire satellite constellation[J]. Geophysical Research Letters, 2020, 47(15):e88308. [59] CARDELLACH E, LI Weiqiang, RIUS A, et al. First precise spaceborne sea surface altimetry with GNSS reflected signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:102-112. [60] 陶鹏. GNSS-R海洋反射接收机研究[D]. 北京:中国科学院大学, 2012. TAO Peng. Research on GNSS-R ocean reflectometry receiver[D]. Beijing:University of Chinese Academy of Sciences, 2012. [61] 白伟华, 夏俊明, 万玮, 等. 中国GNSS-R机载实验综合评估:河流遥感[J]. 科学通报, 2015, 60(24):2356. BAI Weihua, XIA Junming, WAN Wei, et al. A first comprehensive evaluation of China's GNSS-R airborne campaign part Ⅱ:river remote sensing[J]. Chinese Science Bulletin, 2015, 60(24):2356. [62] RANEY R K, PORTER D L. WITTEX:an innovative three-satellite radar altimeter concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11):2387-2391. [63] BLUMSTEIN D, BIANCAMARIA S, GUORIN A, et al. A potential constellation of small altimetry satellites dedicated to continental surface waters (SMASH mission)[C]//Proceedings of AGU Fall Meeting 2019. San Francisco:AGU, 2019. [64] BENKIRAN M, LE TRAON P Y, DIBARBOURE G. Contribution of a constellation of two wide-swath altimetry missions to global ocean analysis and forecasting[J/OL]. Ocean Science, 2021:1-25. (2021-11-16). https://doi.org/10.5194/os-2021-108. [65] RICHARD J, ENJOLRAS V, RYS L, et al. Space altimetry from nano-satellites:payload feasibility, missions and system performances[C]//Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA:IEEE, 2009:Ⅲ-71-Ⅲ-74. [66] GUERRA A G C, FRANCISCO F, VILLATE J, et al. On small satellites for oceanography:a survey[J]. Acta Astronautica, 2016, 127:404-423. [67] 翟振和, 孙中苗, 肖云, 等. 自主海洋测高卫星串飞模式的设计与重力场反演精度分析[J]. 武汉大学学报(信息科学版), 2018, 43(7):1030-1035, 1128. ZHAI Zhenhe, SUN Zhongmiao, XIAO Yun, et al. Two-satellites tandem mode design and accuracy analysis of gravity field inversion for independent marine altimetry satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1030-1035, 1128. [68] 鲍李峰, 许厚泽. 双星伴飞卫星测高模式及其轨道设计[J]. 测绘学报, 2014, 43(7):661-667. DOI:10.13485/j.cnki.11-2089.2014.0109. BAO Lifeng, XU Houze. Twin-satellites altimetry mode and its orbit design[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7):661-667. DOI:10.13485/j.cnki.11-2089.2014.0109. |
| [1] | Xiaodong CHEN, Meng YANG, Yuan YUAN, Wei FENG, Jinway HWANG, Min ZHONG. Evaluation of the accuracy and spatial resolution of SWOT_02 marine gravity model in China's offshore regions [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1031-1041. |
| [2] | Zhenhe ZHAI, Zhongmiao SUN, Jian MA, Bin GUAN, He HUANG, Mingda OUYANG, Lingyong HUANG, Zhiyong HUANG, Xingchen PAN, Shigeng YUAN, Shengli LIU, Sen LIU. Gravity field inversion from China ocean altimetry tandem satellites data and performance analysis [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 714-724. |
| [3] | SUN Zhongmiao, ZHAI Zhenhe, GUAN Bin, RUAN Rengui, HUANG Lingyong. Preliminary verification of dual-satellite tandem altimetry on board [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 207-216. |
| [4] | GAO Xianwen, JIN Taoyong, LI Jiancheng. An improved retracker considering spatial and temporal characteristics of inland water level changes for SAR altimetry [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 217-230. |
| [5] | LI Qianqian, BAO Lifeng, WANG Yong. Analysis of altimetry-derived sea surface observation anomalies for 2022 eruption of Tonga submarine volcano [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 263-273. |
| [6] | LIU Huanling, YANG Weiran, ZHANG Fang, WEN Hanjiang, HU Minzhang, JIANG Tao, LIN Wenqi, LI Chenxi. Multi-scale analysis of gravity anomaly models in sea area [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 274-285. |
| [7] | Xukang XIE, Wei LI. Water level extraction algorithm based on adaptive weighting and deviation matching of multi-source satellite altimetry data [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2111-2124. |
| [8] | SONG Minfeng, HE Xiufeng, WANG Xiaolei, XIAO Ruya, JIA Dongzhen, LI Weiqiang. A GNSS-R geometry computation method considering the Earth's curvature and ellipsoidal height [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 884-894. |
| [9] | ZHAO Chuang, JIN Taoyong, QIN Pengbo, YANG Lianjun. An improved multi-surface function method with residual constraint for the fusion of shipborne and satellite altimetry derived gravity data [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 605-613. |
| [10] | FAN Diao, LI Shanshan, FENG Jinkai, HUANG Yan, FAN Haopeng, ZHANG Jinhui, LI Xinxing. Applying least square collocation method to predict seafloor topography in the unknown sea area [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2039-2053. |
| [11] | LI Yang, GUO Jinyun, SUN Yu, YUAN Jiajia, CHANG Xiaotao, ZHANG Hongri. Inversion of global sea level change and its component contributions by combining time-varying gravity data and altimetry data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1768-1778. |
| [12] | XU Tianhe, MU Dapeng, YAN Haoming, GUO Jinyun, YIN Peng. The causes of contemporary sea level rise over recent two decades: progress and challenge [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1294-1305. |
| [13] | ZONG Jingwen, LI Houpu, JI Bing, OUYANG Yongzhong. Some numerical quadrature for singular integral of the altimetry gravity in the innermost area [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1308-1319. |
| [14] | HU Minzhang, ZHANG Shengjun, JIN Taoyong, WEN Hanjiang, CHU Yonghai, JIANG Weiping, LI Jiancheng. A new generation of global bathymetry model BAT_WHU2020 [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 939-954. |
| [15] | ZHANG Shengjun, LI Jiancheng, KONG Xiangxue. Inversion of global marine gravity anomalies with vertical deflection method deduced from Laplace equation [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 452-460. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||