[1] TÖRNQVIST T E, WALLACE D J, STORMS J E A, et al. Mississippi Delta subsidence primarily caused by compaction of Holocene strata[J]. Nature Geoscience, 2008, 1(3): 173-176. [2] WICKERT A D, ANDERSON R S, MITROVICA J X, et al. The Mississippi River records glacial-isostatic deformation of North America[J]. Science Advances, 2019, 5(1): eaav2366. [3] LIU Yuhao, SUN Xiaohan, WANG Guoquan, et al. Current activity of the long point fault in Houston, Texas constrained by continuous GPS measurements (2013—2018)[J]. Remote Sensing, 2019, 11(10): 1213. [4] 张勤, 赵超英, 丁晓利, 等. 利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征[J]. 地球物理学报, 2009, 52(5): 1214-1222. ZHANG Qin, ZHAO Chaoying, DING Xiaoli, et al. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi'an land subsidence and ground fissure by using GPS and InSAR techniques[J]. Chinese Journal of Geophysics, 2009, 52(5): 1214-1222. [5] JANKOWSKI K L, TÖRNQVIST T E, FERNANDES A M. Vulnerability of Louisiana's coastal wetlands to present-day rates of relative sea-level rise[J]. Nature Communications, 2017, 8: 14792. [6] WEBB E L, FRIESS D A, KRAUSS K W, et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise[J]. Nature Climate Change, 2013, 3(5): 458-465. [7] 班伟. 利用GNSS反射信号反演水位、积雪厚度和土壤湿度的方法研究[D]. 武汉: 武汉大学, 2017. BAN Wei. Study on the method of retrieving water level, snow thickness and soil moisture by GNSS reflection signal[D].Wuhan: Wuhan University,2017. [8] 刘经南, 邵连军, 张训械. GNSS-R研究进展及其关键技术[J]. 武汉大学学报(信息科学版), 2007, 32(11): 955-960. LIU Jingnan, SHAO Lianjun, ZHANG Xunxie. Advances in GNSS-R studies and key technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 955-960. [9] LARSON K M, LÖFGREN J S, HAAS R. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in Space Research, 2013, 51(8): 1301-1310. [10] 张双成, 南阳, 李振宇, 等. GNSS-MR技术用于潮位变化监测分析[J]. 测绘学报, 2016, 45(9): 1042-1049.DOI: 10.11947/j.AGCS.2016.20150498. ZHANG Shuangcheng, NAN Yang, LI Zhenyu, et al. Analysis of tide variation monitored by GNSS-MR[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9): 1042-1049.DOI: 10.11947/j.AGCS.2016.20150498. [11] 何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9): 1168-1178. DOI: 10.11947/j.AGCS.2020.20200228. HE Xiufeng, WANG Jie, WANG Xiaolei, et al. Retrieval of coastal typhoon storm surge using multi-GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1168-1178.DOI: 10.11947/j.AGCS.2020.20200228. [12] WANG Xiaolei, HE Xiufeng, ZHANG Qin, et al. Angle dependence analysis method to determine SNR arc applied to GNSS-MR sea level retrieval[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 14-26. [13] WANG Xiaolei, ZHANG Qin, ZHANG Shuangcheng. Sea level estimation from SNR data of geodetic receivers using wavelet analysis[J]. GPS Solutions, 2019, 23(1): 6. [14] LARSON K M, GUTMANN E D, ZAVOROTNY V U, et al. Can we measure snow depth with GPS receivers?[J]. Geophysical Research Letters, 2009, 36(17): L17502. [15] ZHANG Shuangcheng, ZHOU Meiling, WANG Yajie, et al. Ground-based GPS used in the snow depth survey of Greenland[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 47-55. [16] 边少锋, 周威, 刘立龙, 等. 小波变换与滑动窗口相结合的GNSS-IR雪深估测模型[J]. 测绘学报, 2020, 49(9): 1179-1188. DOI: 10.11947/j.AGCS.2020.20200268. BIAN Shaofeng, ZHOU Wei, LIU Lilong, et al. GNSS-IR model of snow depth estimation combining wavelet transform with sliding window[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1179-1188. DOI: 10.11947/j.AGCS.2020.20200268. [17] 王泽民, 刘智康, 安家春, 等. 基于GPS和北斗信噪比观测值的雪深反演及其误差分析[J]. 测绘学报, 2018, 47(1): 8-16. DOI: 10.11947/j.AGCS.2018.20160644. WANG Zemin, LIU Zhikang, AN Jiachun, et al. Snow depth detection and error analysis derived from SNR of GPS and BDS[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 8-16. DOI: 10.11947/j.AGCS.2018.20160644. [18] 张双成, 戴凯阳, 南阳, 等. GNSS-MR技术用于雪深探测的初步研究[J]. 武汉大学学报(信息科学版), 2018, 43(2): 234-240. ZHANG Shuangcheng, DAI Kaiyang, NAN Yang, et al. Preliminary research on GNSS-MR for snow depth[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 234-240. [19] 周威, 刘立龙, 黄良珂, 等. GLONASS卫星SNR信号的雪深探测[J]. 遥感学报, 2018, 22(5): 889-899. ZHOU Wei, LIU Lilong, HUANG Liangke, et al. Monitoring snow depth based on the SNR signal of GLONASS satellites[J]. Journal of Remote Sensing, 2018, 22(5): 889-899. [20] HU Yufeng, LIU Lin, LARSON K M, et al. GPS interferometric reflectometry reveals cyclic elevation changes in thaw and freezing seasons in a permafrost area (barrow, Alaska)[J]. Geophysical Research Letters, 2018, 45(11): 5581-5589. [21] WANG Xiaolei, HE Xiufeng, ZHANG Qin, et al. The preliminary discussion of the potential of GNSS-IR technology for terrain retrievals[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 79-88. [22] 杨建图, 姜衍祥, 周俊, 等. GPS测量地面沉降的可靠性及精度分析[J]. 大地测量与地球动力学, 2006, 26(1): 70-75. YANG Jiantu, JIANG Yanxiang, ZHOU Jun, et al. Analysis on reliability and accuracy of subsidence measurement with GPS technique[J]. Journal of Geodesy and Geodynamics, 2006, 26(1): 70-75. [23] 贾路路, 王阅兵, 连尉平, 等. “陆态网”GPS与GRACE的中国大陆地表垂直形变对比分析[J]. 测绘学报, 2018, 47(7): 899-906. DOI: 10.11947/j.AGCS.2018.20170281. JIA Lulu, WANG Yuebing, LIAN Weiping, et al. Comparison and analysis of crustal vertical deformation in China's mainland observed by GPS from CMONOC and GRACE[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 899-906. DOI: 10.11947/j.AGCS.2018.20170281. [24] 吴富梅, 魏子卿, 刘光明. 利用GNSS数据分析大港验潮站地壳沉降[J]. 测绘学报, 2017, 46(4): 430-435. DOI: 10.11947/j.AGCS.2017.20160506. WU Fumei, WEI Ziqing, LIU Guangming. Crustal subsidence analysis from GNSS data for dagang tidal station in Qingdao[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(4): 430-435. DOI: 10.11947/j.AGCS.2017.20160506. [25] MARTÍN-NEIRA M. A passive reflectometry and interferometry system (PARIS) -application to ocean altimetry[J]. ESA Journal, 1993(17): 331-355. [26] HOLDEN L D, LARSON K M. Ten years of Lake Taupo surface height estimates using the GNSS interferometric reflectometry[J].Journal of Geodesy, 2021, 95(7): 1-12. [27] LÖFGREN J S, HAAS R. Sea level measurements using multi-frequency GPS and GLONASS observations[J].EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 1-13. [28] HEINRICH P, PAULSELL R P, MILNER R, et al. Investigation and GIS development of the buried Holocene-Pleistocene surface in the Louisiana coastal plain[R]. Baton Rouge:Louisiana Geological Survey, 2015. |