[1] FANG Jiayi, LIU Wei, YANG Saini, et al. Spatial-temporal changes of coastal and marine disasters risks and impacts in Mainland China[J]. Ocean & Coastal Management, 2017, 139:125-140. DOI:10.1016/j.ocecoaman.2017.02.003. [2] SHI Xianwu, HAN Ziqiang, FANG Jiayi, et al. Assessment and zonation of storm surge hazards in the coastal areas of China[J]. Natural Hazards, 2020, 100:39-48. DOI:10.1007/s11069-019-03793-z. [3] LÖFGREN J S, HAAS R, SCHERNECK H G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world[J]. Journal of Geodynamics, 2014, 80:66-80. DOI:10.1016/j.jog.2014.02.012. [4] FRITZ H M, BLOUNT C, SOKOLOSKI R, et al. Hurricane Katrina storm surge reconnaissance[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(5):644-656. DOI:10.1061/(ASCE)1090-0241(2008)134:5(644). [5] LI Linlin, YANG Jie, LIN Chuanyao, et al. Field survey of typhoon Hato (2017) and a comparison with storm surge modeling in Macau[J]. Natural Hazards and Earth System Sciences, 2018, 18(12):3167-3178. DOI:10.5194/nhess-18-3167-2018. [6] PENG Dongju, HILL E M, LI Linlin, et al. Application of GNSS interferometric reflectometry for detecting storm surges[J]. GPS Solutions, 2019, 23(2):47. DOI:10.1007/s10291-019-0838-y. [7] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS) application to ocean altimetry[J]. ESA Journal, 1993, 17(4):331-355. [8] ANDERSON K D. Determination of water level and tides using interferometric observations of GPS signals[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(8):1118-1127. DOI:10.1175/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2. [9] MARTIN-NEIRA M, CAPARRINI M, FONT-ROSSELLO J, et al. The PARIS concept:an experimental demonstration of sea surface altimetry using GPS reflected signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):142-150. DOI:10.1109/36.898676. [10] LÖFGREN J S, HAAS R. Sea level measurements using multi-frequency GPS and GLONASS observations[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1):50. DOI:10.1186/1687-6180-2014-50. [11] LARSON K M, RAY R D, NIEVINSKI F G, et al. The accidental tide gauge:a GPS reflection case study from Kachemak Bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1200-1204. DOI:10.1109/LGRS.2012.2236075. [12] 蒋兴伟, 林明森, 张有广. 中国海洋卫星及应用进展[J]. 遥感学报, 2016, 20(5):1185-1198. DOI:10.11834/jrs.20166153. JIANG Xingwei, LIN Mingsen, ZHANG Youguang. Progress and prospect of Chinese ocean satellites[J]. Journal of Remote Sensing, 2016, 20(5):1185-1198. DOI:10.11834/jrs.20166153. [13] LARSON K M, RAY R D, WILLIAMS S D P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2):292-307. DOI:10.1175/JTECH-D-16-0101.1. [14] ROUSSEL N, RAMILLIEN G, FRAPPART F, et al. Sea level monitoring and sea state estimate using a single geodetic receiver[J]. Remote Sensing of Environment, 2015, 171:261-277. DOI:10.1016/j.rse.2015.10.011. [15] WANG Xiaolei, ZHANG Qin, ZHANG Shuangcheng. Sea level estimation from SNR data of geodetic receivers using wavelet analysis[J]. GPS Solutions, 2019, 23(1):6. DOI:10.1007/s10291-018-0798-7. [16] WANG Xiaolei, HE Xiufeng, ZHANG Qin. Coherent superposition of multi-GNSS wavelet analysis periodogram for sea-level retrieval in GNSS multipath reflectometry[J]. Advances in Space Research, 2020, 65(7):1781-1788. DOI:10.1016/j.asr.2019.12.023. [17] SONG Minfeng, HE Xiufeng, WANG Xiaolei, et al. Study on the quality control for periodogram in the determination of water level using the GNSS-IR technique[J]. Sensors, 2019, 19(20):4524. DOI:10.3390/s19204524. [18] JIN Shuanggen, QIAN Xiaodong, WU X. Sea level change from BeiDou navigation satellite system-reflectometry (BDS-R):first results and evaluation[J]. Global and Planetary Change, 2017, 149:20-25. DOI:10.1016/j.gloplacha.2016.12.010. [19] WANG Xiaolei, HE Xiufeng, ZHANG Qin. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval[J]. Remote Sensing of Environment, 2019, 231:111229. DOI:10.1016/j.rse.2019.111229. [20] 金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10):1389-1398. DOI:10.11947/j.AGCS.2017.20170282. Jin Shuanggen, ZHANG Qinyun, QIAN Xiaodong. New progress and application prospects of global navigation satellite system reflectometry (GNSS+R)[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1389-1398. DOI:10.11947/j.AGCS.2017.20170282. [21] BILICH A, LARSON K M. Mapping the GPS multipath environment using the signal-to-noise ratio (SNR)[J]. Radio Science, 2007, 42(6):RS6003. DOI:10.1029/2007rs003652. [22] LARSON K M, LÖFGREN J S, HAAS R, et al. Coastal sea level measurements using a single geodetic GPS receiver[J]. Advances in Space Research, 2013, 51(8):1301-1310. DOI:10.1016/j.asr.2012.04.017. [23] TABIBI S, GEREMIA-NIEVINSKI F, VAN DAM T. Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3773-3785. DOI:10.1109/TGRS.2017.2679899. [24] 姚宜斌, 张豹, 严凤, 等. 两种精化的对流层延迟改正模型[J]. 地球物理学报, 2015, 58(5):1492-1501. DOI:10.6038/cjg20150503. YAO Yibin, ZHANG Bao, YAN Feng, et al. Two new sophisticated models for tropospheric delay corrections[J]. Chinese Journal of Geophysics, 2015, 58(5):1492-1501. DOI:10.6038/cjg20150503. [25] WILLIAMS S D P, NIEVINSKI F G. Tropospheric delays in ground-based GNSS multipath reflectometry:experimental evidence from coastal sites[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(3):2310-2327. DOI:10.1002/2016JB013612. [26] ROESLER C, LARSON K M. Software tools for GNSS interferometric reflectometry (GNSS-IR)[J]. GPS Solutions, 2018, 22(3):80. DOI:10.1007/s10291-018-0744-8. [27] NIEVINSKI F G, LARSON K M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications[J]. GPS Solutions, 2014, 18(2):309-322. DOI:10.1007/s10291-013-0331-y. |