Acta Geodaetica et Cartographica Sinica ›› 2020, Vol. 49 ›› Issue (9): 1158-1167.doi: 10.11947/j.AGCS.2020.20200170
Previous Articles Next Articles
WANG Meng1,2, SHAN Tao1, WANG Dun2
Received:
2020-05-06
Revised:
2020-06-27
Published:
2020-09-19
CLC Number:
WANG Meng, SHAN Tao, WANG Dun. Development of GNSS technology for high earth orbit spacecraft[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1158-1167.
[1] JORGENSEN P. Autonomous navigation of geosynchronous satellites using the NAVSTAR global positioning sys-tem[C]//Proceedings of National Telesystems Conference. New York:Institute of Electrical and Electronics Engineers, 1982. [2] BAUER F H, MOREAU M C, DAHLE-MELSAETHER M E, et al. The GPS space service volume[C]//Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006). Fort Worth:[s.n.], 2006. [3] BAUER F H, PARKER J J K, WELCH B, et al. Developing a robust, interoperable GNSS space service volume (SSV) for the global space user community[C]//Proceedings of the 2017 International Technical Meeting of The Institute of Navigation, Monterey. Monterey:[s.n.], 2017:132-149. [4] PARKER J J K, BAUER F H, ASHMAN B W, et al. Development of an interoperable GNSS space service vo-lume[C]//Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation. Miami:[s.n.], 2018. [5] MILLER J J, BAUER F H, ORIA A J, et al. Achieving GNSS compatibility and interoperability to support space users[C]//Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland:[s.n.], 2016. [6] ENDERLE W, GINI F, BOOMKAMP H, et al. Space user visibility benefits of the multi-GNSS space service volume:an inter-nationally-coordinated, global and mission-specific analysis[C]//Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2018). Miami:[s.n.], 2018. [7] JING Shuai, ZHAN Xingqun, LU Jun, et al. Characterisation of GNSS space service volume[J]. Journal of Navigation, 2015, 68(1):107-125. [8] PARKER J J K, VALDEZ J E, BAUER F H, et al. Use and protection of GPS sidelobe signals for enhanced navigation perfor-mance in high earth orbit[C]//Proceedings of the 39th Annual American-Astronautical-Society Rocky Mountain Section Guidance, Navigation and Control Conference. Breckenridge:[s.n.], 2016:329-341. [9] BARKER L, FREY C. GPS at GEO:a first look at GPS from SBIRS GEO1[C]//Proceedings of AAS GNC Conference. Brecke-nridge:[s.n.], 2012:199-212. [10] LORGA J F M, SILVA P F, DOVIS F, et al. Autonomous orbit determination for future GEO and HEO missions[C]//Proceedings of the 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). Noordwijk:IEEE, 2010:1-14. [11] MARMET F X, MAUREAU J, CALAPRICE M. GPS/Galileo navigation in GTO/GEO orbit[J]. Acta Astronautica, 2015, 117:263-276. [12] CHAPEL J, STANCLIFFE D, BEVACQUA T, et al. Guidance, navigation, and control performance for the GOES-R spacecraft[J]. CEAS Space Journal, 2015, 7(2):87-104. [13] LARSON K, GAYLOR D, WINKLER S. Worst-case GPS constellation for testing navigation at geosynchronous orbit for GOES-R[J]. Advances in the Astronautical Sciences, 2013, 149:403-416. [14] LONG A, FARAHMAND M, CARPENTER R. Navigation operations for the magnetospheric multiscale mis-sion[C]//Proceedings of the 25th International Symposium on Space Flight Dynamics. Munich:NASA Goddard Space Flight Center, 2015. [15] ZENTGRAF P, BERGE S, CHASSET C, et al. Preparing the GPS experiment for the small-geo mission[C]//Proceedings of the 33rd Annual AAS Guidance and Control Conference. Breckenridge, CO:[s.n.], 2010. [16] WINTERNITZ L M B, BAMFORD W A, HECKLER G W. A GPS receiver for high-altitude satellite navigation[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4):541-556. [17] BAMFORD W, NAASZ B, MOREAU M C. Navigation performance in high earth orbits using navigator GPS receiver[C]//Proceedings of the 29th Annual AAS Guidance and Control Conference. Breckenridge, CO:AAS, 2006. [18] MARTZEN P D, HIGHSMITH D E, VALDEZ J E, et al. GPS antenna characterization experiment (ACE):receiver design and initial results[C]//Proceedings of the Institute of Navigation Joint Navigation Conference. 2015. [19] DONALDSON J E, PARKER J J K, MOREAU M C, et al. Characterization of on-orbit GPS transmit antenna patterns for space users[C]//Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation. Miami, Florida:[s.n.], 2018. [20] BALBACH O, EISSFELLER B, HEIN G W, et al. Tracking GPS above GPS satellite altitude:first results of the GPS experiment on the HEO mission equator-S[C]//Proceedings of Position Location and Navigation Symposium. Palm Springs, CA:IEEE, 1998:243-249. [21] POWELL T D, MARTZEN P D, SEDLACEK S B, et al. GPS signals in a geosynchronous transfer orbit:"Falcon Gold" data processing[C]//Proceedings of Institute of Navigation National Technical Meeting. California:[s.n.], 1999:575-585. [22] MOREAU M C, DAVIS E P, CARPENTER J R. Results from the GPS flight experiment on the high earth orbit AMSAT OSCAR-40 spacecraft[C]//Proceedings of the Institute of Navigation GPS 2002 Conference. Portland, Oregon:[s.n.], 2002:122-123. [23] DAVIS G, MOREAU M, CARPENTER R, et al. GPS-based navigation and orbit determination for AMSAT AO-40 Satel-lite[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey, CA:AIAA, 2002. [24] EBINUMA T, UNWIN M. GPS receiver demonstration on a Galileo test bed satellite[J]. Navigation, 2007, 60(3):349-362. [25] UNWIN M, VAN STEENWIJK R D V, BLUNT P, et al, Navigating above the GPS constellation-preliminary results from the SGR-GEO on GIOVE-A[C]//Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS +2013). Nashville, TN:[s.n.], 2013. [26] WINTERNITZ L B, BAMFORD W A, PRICE S R, et al. Global positioning system navigation above 76, 000 km for NASA's magnetospheric multiscale mission[J]. Navigation, 2017, 64(2):289-300. [27] FARAHMAND M, LONG A, HOLLISTER J, et al. Magnetospheric MultiScale mission navigation performance during apogee-raising and beyond[J]. Advances in the Astronautical Sciences, 2018, 162:2738-2739. [28] FAN Min, HU Xiaogong, DONG Guangliang, et al. Orbit improvement for Chang'E-5T lunar returning probe with GNSS tech-nique[J]. Advances in Space Research, 2015, 56(11):2473-2482. [29] WANG Dun, DONG Qijia, WANG Meng, et al. Results from the GNSS flight experiment on the circumlunar free return trajectory of China CE-5T1 spacecraft[C]//Proceedings of the 66th International Astronautical Congress. Jerusalem:[s.n.], 2015. [30] WANG Meng, SHAN Tao, MA Lin, et al. Performance of GPS and GPS/SINS navigation in the CE-5T1 skip re-entry mission[J]. GPS Solutions, 2018, 22(2):56. [31] JIANG Kecai, LI Min, WANG Meng, et al. TJS-2 geostationary satellite orbit determination using onboard GPS measurements[J]. GPS Solutions, 2018, 22(3):87. [32] 李冰, 刘蕾, 王猛. GEO卫星GNSS导航在轨长期性能验证与分析[J]. 上海航天, 2017, 34(4):133-143. LI Bing, LIU Lei, WANG Meng. Performance demonstration and analysis of GNSS navigation in GEO satellites[J]. Aerospace Shanghai, 2017, 34(4):133-143. [33] WINKLER S, RAMSEY G, FREY C, et al. GPS receiver on-orbit performance for the GOES-R spacecraft[C]//Proceedings of the 10th International ESA Conference on GNC Systems. Salzburg:[s.n.], 2017. [34] WINTERNITZ L B, BAMFORD W A, PRICE S R. New high-altitude GPS navigation results from the magnetospheric mul-tiscale spacecraft and simulations at lunar distances[C]//Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation, (ION GNSS+2017). Portland:[s.n.], 2017. [35] NEUMANN N, DE BRUIJN F, LVBKE-OSSENBECK B, et al. In-flight results from the gps receiver on small-GEO[C]//Proceedings of the 68th International Astronautical Congress. Adelaide:[s.n.], 2017. [36] WENNERSTEN M D, BANES V, BOEGNER G, et al. PiVoT GPS receiver[C]//Proceedings of the ION GPS Conference 2001. Salt Lake City, UT:[s.n.], 2001:855-861. [37] MEHLEN C, LAURICHESSE D. Real-time GEO orbit determination using TOPSTAR 3000 GPS receiver[J]. Navigation, 2001, 48(3):169-179. [38] HARTRAMPF M, FILIPPI H, KRAUSS P A, et al. LION navigator for transfer to GEO using electric propul-sion[C]//Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS +2015). Tampa, FL:[s.n.], 2015:3910-3927. [39] KRAUSS P A, HARTRAMPF M, BARRIOS-MONTALVO A, et al. LION NEO:a versatile space GNSS receiver[C]//Proceedings of Guidance Navigation and Control 2016. Breckenridge:[s.n.], 2016:355-366. [40] KING T. Extending the use of GPS to geostationary altitudes[C]//AIAA SPACE 2011 Conference & Exposition. Long Beach:AIAA, 2011:1-9. [41] WINKLER S, VOBORIL C, HART R, et al. GOES-R use of GPS at GEO (Viceroy-4)[C]//Proceedings of the 2013 AAS Guidance and Control Conference. Breckenridge:[s.n.], 2013:391-401. [42] DEMPSTER A G. Use of comb filters in GPS L1 receivers[J]. GPS Solutions, 2018, 12(3):179-185. [43] HASSANIEH H, ADIB F, KATABI D, et al. Faster GPS via the sparse Fourier transform[C]//Proceedings of the 18th Annual International Conference on Mobile Computing and Networking. New York, NY:ACM, 2012:353-364. [44] HARSHA P B S, RATNAM D V. Implementation of advanced carrier tracking algorithm using adaptive-extended Kalman filter for GNSS receivers[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9):1280-1284. [45] HENKEL P, GIGER K, GUNTHER C. Multifrequency, multisatellite vector phase-locked loop for robust carrier tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4):674-681. [46] CAPUANO V, BLUNT P, BOTTERON C, et al. Orbital filter aiding of a high sensitivity GPS receiver for lunar mis-sions[C]//Proceedings of 2016 International Technical Meeting of The Institute of Navigation. Monterey, CA:[s.n.], 2016. [47] 张万威, 徐其超. 基于GNSS的地球静止轨道卫星自主定轨仿真研究[C]//第五届中国卫星导航学术年会论文集. 南京:中国卫星导航系统管理办公室学术交流中心, 2014:1001-1006. ZHANG Wanwei, XU Qichao. Simulation study on autonomous orbit determination for Geostationary satellite based on GNSS[C]//Proceedings of the 5th China Satellite Navigation Conference. Nanjing:Academic Exchange Center of China Satellite Navigation System Management Office, 2014:1001-1006. [48] 袁俊军, 赵春梅, 吴琼宝. 资源三号01星及02星星载GPS天线PCO、PCV在轨估计及对精密定轨的影响[J]. 测绘学报, 2018, 47(5):672-682. DOI:10.11947/j.AGCS.2018.20170703. YUAN Junjun, ZHAO Chunmei, WU Qiongbao. Phase center offset and phase center variation estimation in-flight for ZY-301 and ZY-302 Spaceborne GPS antennas and the influence on precision orbit determination[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):672-682. DOI:10.11947/j.AGCS.2018.20170703. [49] ZENG Tian, SUI Lifen, JIA Xiaolin, et al. Results and analyses of BDS precise orbit determination with the enhance-ment of Fengyun-3C[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3):68-78. [50] SU Xing, GENG Tao, LI Wenwen, et al. Chang'E-5T orbit determination using onboard GPS observations[J]. Sensors, 2017, 17(6):1260. [51] 李铁映, 杨慧, 王海红. 导航卫星光压建模及表面光学特性参数影响分析[J]. 宇航学报, 2015, 36(6):731-738. LI Tieying, YANG Hui, WANG Haihong. Navigation satellite solar radiation of the effect of surface pressure modeling and analysis optical parameters[J]. Journal of Astronautics, 2015, 36(6):731-738. [52] 陈秋丽, 杨慧, 陈忠贵, 等. 北斗卫星太阳光压解析模型建立及应用[J]. 测绘学报, 2019, 48(2):169-175. DOI:10.11947/j.AGCS.2019.20180097. CHEN Qiuli, YANG Hui, CHEN Zhonggui, et al. Solar radiation pressure modeling and application of BDS satellite[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):169-175. DOI:10.11947/j.AGCS.2019.20180097. [53] 范利涛, 吴杰, 汤国建. GPS差分相对定位应用于航天器自主交会对接的研究[J]. 飞行器测控学报, 2008, 27(3):78-81. FAN Litao, WU Jie, TANG Guojian. Researches on DGPS for spacecraft autonomous rendezvous and docking[J]. Journal of Spacecraft TT&C Technology, 2008, 27(3):78-81. [54] LANE C, AXELRAD P. Analysis of relative navigation in high earth orbits[J]. The Journal of the Astronautical Sciences, 2007, 55(1):23-52. [55] LANE C, AXELRAD P. Relative semimajor axis uncertainty in high earth orbits[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6):1835-1839. [56] MOHIUDDIN S, PSIAKI M. Filtered dual-frequency carrier-phase differential GPS for relative navigation of high-altitude spacecraft[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Keystone, CO:AIAA, 2006. [57] 郭树人, 蔡洪亮, 孟轶男, 等. 北斗三号导航定位技术体制与服务性能[J]. 测绘学报, 2019, 48(7):810-821. DOI:10.11947/j.AGCS.2019.20190091. GUO Shuren, CAI Hongliang, MENG Yinan, et al. BDS-3 RNSS technical characteristics and service performance[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7):810-821. DOI:10.11947/j.AGCS.2019.20190091. [58] MUSUMECI L, DOVIS F, SILVA J S, et al. Design of a high sensitivity GNSS receiver for lunar missions[J]. Advances in Space Research, 2016, 57(11):2285-2313. [59] ASHMAN B W, PARKER J J, BAUER F H, et al. Exploring the limits of high altitude GPS for future lunar mis-sions[C]//Proceedings of the 41st Annual AAS Guidance and Control Conference. Breckenridge, CO:AAS, 2018. [60] CAPUANO V, BOTTERON C, LECL? RE J, et al. Feasibility study of GNSS as navigation system to reach the Moon[J]. Acta Astronautica, 2015, 116:186-201. [61] 张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9):1073-1087. DOI:10.11947/j.AGCS.2019.20190176. ZHANG Xiaohong, MA Fujian. Review of the development of LEO navigation-augmented GNSS[J]. Acta Geodaetica et Carto-graphica Sinica, 2019, 48(9):1073-1087. DOI:10.11947/j.AGCS.2019.20190176. [62] LI Wenwen, LI Min, ZHAO Qile, et al. Extraction of electron density profiles with geostationary satellite-based GPS side lobe occultation signals[J]. GPS Solutions, 2019, 23(4):110. |
[1] | TAN Shusen, ZHANG Tianqiao. Progress and evolution of contemporary GNSS [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1114-1118. |
[2] | ZHANG Kefei, LI Haobo, WANG Xiaoming, ZHU Dantong, HE Qimin, LI Longjiang, HU Andong, ZHENG Nanshan, LI Huaizhan. Recent progresses and future prospectives of ground-based GNSS water vapor sounding [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1172-1191. |
[3] | DANG Yamin, YANG Qiang, WANG Wei, LIANG Yuke. Analysis on 3D crustal deformation of Qinghai-Tibet Plateau and its surrounding areas based on block model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1192-1205. |
[4] | YUAN Yunbin, HOU Pengyu, ZHANG Baocheng. GNSS undifferenced and uncombined data processing and PPP-RTK high-precision positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1225-1238. |
[5] | JIN Shuanggen, WANG Qisheng, SHI Qiqi. Parameters estimation and applications from single- to five-frequency multi-GNSS precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1239-1248. |
[6] | ZHANG Xiaohong, ZHOU Yuhui, ZHU Feng, HU Haojie. A new vehicle motion constraint model with parameter autonomous learning and analysis on inertial drift error suppression [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1249-1258. |
[7] | LI Xingxing, ZHANG Wei, YUAN Yongqiang, ZHANG Keke, WU Jiaqi, LOU Jiaqing, LI Jie, ZHENG Hongjie. Review of GNSS precise orbit determination: status, challenges, and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1271-1293. |
[8] | HE Xiufeng, GAO Zhuang, XIAO Ruya, LUO Haibin, JIA Dongzhen, ZHANG Zhetao. Application and prospect of the integration of InSAR and BDS/GNSS for land surface deformation monitoring [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1338-1355. |
[9] | PENG Rencan, DONG Jian, JIA Shuaidong, TANG Lulu, WANG Fang. Research progress and prospect of digital depth model constructing technology [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1575-1587. |
[10] | LIU Jingnan, LUO Yarong, GUO Chi, GAO Kefu. PNT intelligence and intelligent PNT [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828. |
[11] | SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, OUYANG Mingda. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. |
[12] | YAO Yibin, ZHAO Qingzhi. Research progress and prospect of monitoring tropospheric water vapor by GNSS technique [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 935-952. |
[13] | YUAN Junjun, LI Kai, TANG Chengpan, ZHOU Shanshi, HU Xiaogong, CAO Jianfeng. Accuracy analysis of LEO satellites orbit prediction for precise position service [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 640-647. |
[14] | ZHOU Baoding, ZHANG Wenxiang, HUANG Jincai, LI Qingquan. Indoor and outdoor integrated pedestrian network construction based on crowdsourced data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 718-728. |
[15] | HAN Litao, ZHOU Lijuan, GONG Cheng, ZHANG Aiguo. An indoor navigation network considering walking habits and its generation algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 729-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||