[1] HEISKANEN W A, MORITZ H. Physical geodesy[M]. San Francisco:W H Freeman and Company, 1967. [2] 翟振和,范昊鹏,管斌,等.国产零长弹簧原理动态重力仪首次飞行试验及精度评估[J].测绘通报, 2021(2):68-71. ZHAI Zhenhe, FAN Haopeng, GUAN Bin, et al. First flight test and accuracy evaluation of domestic dynamic gravimeter through the principle of zero length spring[J]. Bulletin of Surveying and Mapping, 2021(2):68-71. [3] 刘晓刚,孙中苗,王云鹏,等.航空重力矢量测量数据的外符合精度评估[J].华中科技大学学报(自然科学版), 2022, 50(9):70-75. LIU Xiaogang, SUN Zhongmiao, WANG Yunpeng, et al. External coincidence precision evaluation of airborne vector gravimetry data[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(9):70-75. [4] GOLI M, NAJAFI-ALAMDARI M, VANÍČEK P. Numerical behaviour of the downward continuation of gravity anomalies[J]. Studia Geophysica et Geodaetica, 2011, 55(2):191-202. [5] 马健,魏子卿,任红飞,等.顾及远区影响的向下延拓实用算法[J].地球物理学进展, 2018, 33(2):498-502. MA Jian, WEI Ziqing, REN Hongfei, et al. Practical algorithm of the downward continuation considering the far-zone effect[J]. Progress in Geophysics, 2018, 33(2):498-502. [6] 黄谟涛,邓凯亮,吴太旗,等.重力异常向上延拓严密改化模型及向下延拓应用[J].测绘学报, 2022, 51(1):41-52. DOI:10.11947/j.AGCS.2022. 20200547. HUANG Motao, DENG Kailiang, WU Taiqi, et al. Rigorous modification model of upward continuation and its applications on the downward continuation of gravity anomaly[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1):41-52. DOI:10.11947/j.AGCS.2022. 20200547. [7] 蒋涛,李建成,王正涛,等.航空重力向下延拓病态问题的求解[J].测绘学报, 2011, 40(6):684-689. JIANG Tao, LI Jiancheng, WANG Zhengtao, et al. Solution of ill-posed problem in downward continuation of airborne gravity[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6):684-689. [8] 邓凯亮,黄谟涛,暴景阳,等.向下延拓航空重力数据的Tikhonov双参数正则化法[J].测绘学报, 2011, 40(6):690-696. DENG Kailiang, HUANG Motao, BAO Jingyang, et al. Tikhonov two-parameter regulation algorithm in downward continuation of airborne gravity data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6):690-696. [9] 孙文,吴晓平,王庆宾,等.航空重力数据向下延拓的波数域迭代Tikhonov正则化方法[J].测绘学报, 2014, 43(6):566-574. SUN Wen, WU Xiaoping, WANG Qingbin, et al. Wave number domain iterative Tikhonov regularization method for downward continuation of airborne gravity data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6):566-574. [10] 邓凯亮,暴景阳,黄谟涛,等.航空重力数据向下延拓的Tikhonov正则化法仿真研究[J].武汉大学学报(信息科学版), 2010, 35(12):1414-1417. DENG Kailiang, BAO Jingyang, HUANG Motao, et al. Simulation of Tikhonov regulation algorithm in downward continuation of airborne gravity data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(12):1414-1417. [11] GU Yongwei, GUI Qingming, ZHANG Xuan, et al. Iterative solution of regularization to ill-conditioned problems in geodesy and geophysics[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):59-65. [12] 黄谟涛,宁津生,欧阳永忠,等.联合使用位模型和地形信息的陆区航空重力向下延拓方法[J].测绘学报, 2015, 44(4):355-362. DOI:10.11947/j.AGCS.2015. 20130751. HUANG Motao, NING Jinsheng, OUYANG Yongzhong, et al. Downward continuation of airborne gravimetry on land using geopotential model and terrain information[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4):355-362. DOI:10.11947/j.AGCS.2015. 20130751. [13] 刘敏,黄谟涛,欧阳永忠,等.顾及地形效应的重力向下延拓模型分析与检验[J].测绘学报, 2016, 45(5):521-530, 551. DOI:10.11947/j.AGCS.2016. 20150453. LIU Min, HUANG Motao, OUYANG Yongzhong, et al. Test and analysis of downward continuation models for airborne gravity data with regard to the effect of topographic height[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):521-530, 551. DOI:10.11947/j.AGCS.2016. 20150453. [14] HSIAO Y S, HWANG C. Topography-assisted downward continuation of airborne gravity:an application for geoid determination in Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2010, 21(4):627-637. [15] 王兴涛,夏哲仁,石磐,等.航空重力测量数据向下延拓方法比较[J].地球物理学报, 2004, 47(6):1017-1022. WANG Xingtao, XIA Zheren, SHI Pan, et al. A comparison of different downward continuation methods for airborne gravity data[J]. Chinese Journal of Geophysics, 2004, 47(6):1017-1022. [16] 刘晓刚,孙中苗,管斌,等.航空重力测量数据向下延拓的改进Poisson积分迭代法[J].测绘学报, 2018, 47(9):1188-1195. DOI:10.11947/j.AGCS.2018. 20170569. LIU Xiaogang, SUN Zhongmiao, GUAN Bin, et al. Downward continuation of airborne gravimetry data based on improved Poisson integral iteration method[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9):1188-1195. DOI:10.11947/j.AGCS.2018. 20170569. [17] 翟振和,王兴涛,李迎春.解析延拓高阶解的推导方法与比较分析[J].武汉大学学报(信息科学版), 2015, 40(1):134-138. ZHAI Zhenhe, WANG Xingtao, LI Yingchun. Solution and comparison of high order term of analytical continuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1):134-138. [18] WEI Ziqing. High-order radial derivative of harmonic function and gravity anomaly[J]. Journal of Physical Science and Application, 2014, 7(4):454-467. [19] 邓凯亮,黄谟涛,吴太旗,等.利用高阶径向导数带限模型进行重力向下延拓计算[J/OL].武汉大学学报(信息科学版), 2022[2023-09-22]. https://doi.org/10.13203/j.whugis20210630. DOI:10.13203/j.whugis20210630. DENG Kailiang, HUANG Motao, WU Taiqi, et al. Downward continuation of gravity using the band-limited models for high-order radial derivatives of gravity anomaly[J/OL]. Geomatics and Information Science of Wuhan University, 2022[2023-09-22]. https://doi.org/10.13203/j.whugis20210630. DOI:10.13203/j.whugis 20210630. [20] GANG Yin, LIN Zhang. An improved stable downward continuation of potential fields using a truncated Taylor series and regularized vertical derivatives method[J]. Journal of Geophysics and Engineering, 2018, 15(5):2001-2008. [21] 黄谟涛,邓凯亮,吴太旗,等.重力异常垂向梯度严密改化模型及应用[J].地球物理学报, 2022, 65(12):4616-4627. HUANG Motao, DENG Kailiang, WU Taiqi, et al. A rigorous modification model and its application for computing the vertical gradient of gravity anomaly[J]. Chinese Journal of Geophysics, 2022, 65(12):4616-4627. [22] JIANG Tao, WANG Yanming. On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation[J]. Journal of Geodesy, 2016, 90(12):1405-1418. [23] PITOŇÁK M, NOVÁK P, ESHAGH M, et al. Downward continuation of gravitational field quantities to an irregular surface by spectral weighting[J]. Journal of Geodesy, 2020, 94(7):1-26. [24] VANÍČEK P, HUANG J, NOVÁK P, et al. Determination of the boundary values for the Stokes-Helmert problem[J]. Journal of Geodesy, 1999, 73(4):180-192. [25] 魏子卿.第二大地边值问题引论[J].测绘学报, 2022, 51(6):797-803. DOI:10.11947/j.AGCS.2022. 20220067. WEI Ziqing. Introduction to the second geodetic boundary value problem[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):797-803. DOI:10.11947/j.AGCS.2022. 20220067. [26] 马健,魏子卿,任红飞.确定似大地水准面的Hotine-Helmert边值解算模型[J].测绘学报, 2019, 48(2):153-160. DOI:10.11947/j.AGCS.2019. 20170594. MA Jian, WEI Ziqing, REN Hongfei. Hotine-Helmert boundary-value calculation model for quasi-geoid determination[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):153-160. DOI:10.11947/j.AGCS.2019. 20170594. [27] MA Jian, WEI Ziqing, REN Hongfei.. The spectral analysis and application of low-degree modified spheroidal Hotine kernel[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3):104-114. [28] 魏子卿.第二大地边值问题[M].北京:科学出版社, 2021. WEI Ziqing. The second geodetic boundary value problem[M]. Beijing:Science Press, 2021 |