[1] SINGH A. Review article digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6):989-1003. [2] 眭海刚,冯文卿,李文卓,等.多时相遥感影像变化检测方法综述[J].武汉大学学报(信息科学版), 2018, 43(12):1885-1898. SUI Haigang, FENG Wenqing, LI Wenzhuo, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898. [3] 龚健雅,许越,胡翔云,等.遥感影像智能解译样本库现状与研究[J].测绘学报, 2021, 50(8):1013-1022. DOI:10.11947/j.AGCS.2021. 20210085. GONG Jianya, XU Yue, HU Xiangyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1013-1022. DOI:10.11947/j.AGCS.2021. 20210085. [4] 张祖勋,姜慧伟,庞世燕,等.多时相遥感影像的变化检测研究现状与展望[J].测绘学报, 2022, 51(7):1091-1107. 10. 11947/j.AGCS.2022. 20220070. ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, et al. Review and prospect in change detection of multi-temporal remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1091-1107. DOI:10.11947/j.AGCS.2022. 20220070. [5] HUSSAIN M, CHEN D, CHENG A, et al. Change detection from remotely sensed images:from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80:91-106. [6] RICHARDS J A. Thematic mapping from multitemporal image data using the principal components transformation[J]. Remote Sensing of Environment, 1984, 16(1):35-46. [7] LIU Junfu, CHEN Keming, XU Guangluan, et al. Convolutional neural network-based transfer learning for optical aerial images change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1):127-131. [8] LIU S, BRUZZONE L, BOVOLO F, et al. Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4363-4378. [9] CHEN G, HAY G J, CARVALHO L M T, et al. Object-based change detection[J]. International Journal of Remote Sensing, 2012, 33(14):4434-4457. [10] CHEN Jie, HUANG Haozhe, PENG Jian, et al. Contextual information-preserved architecture learning for remote-sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14. [11] WANG L, LI R, ZHANG C, et al. UNetFormer:a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190:196-214. [12] ZHU Q, GUO X, DENG W, et al. Land-use/Land-cover change detection based on a siamese global learning framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184:63-78. [13] SHAFIQUE A, CAO Guo, KHAN Z, et al. Deep learning-based change detection in remote sensing images:a review[J]. Remote Sensing, 2022, 14(4):871. [14] JI Shunping, SHEN Yanyun, LU Meng, et al. Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples[J]. Remote Sensing, 2019, 11(11):1343. [15] PENG Daifeng, ZHANG Yongjun, GUAN Haiyan. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11):1382. [16] BROMLEY J, BENTZ J W, BOTTOU L, et al. Signature verification using a "siamese" time delay neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4):669-688. [17] CAYE D R, LE S B, BOULCH A. Fully convolutional siamese networks for change detection[C]//Proceedings of the 25 th IEEE International Conference on Image Processing (ICIP). Athens:IEEE, 2018:4063-4067. [18] FANG Sheng, LI Kaiyu, SHAO Jinyuan, et al. SNUNet-CD:a densely connected siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [19] CHEN P, ZHANG B, HONG D, et al. FCCDN:feature constraint network for VHR image change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187:101-119. [20] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 18 th Medical Image Computing and Computer-Assisted Intervention. Munich:Springer, 2015:234-241. [21] ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet:redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867. [22] GUO Menghao, XU Tianxing, LIU Jiangjiang, et al. Attention mechanisms in computer vision:a survey[J]. Computational Visual Media, 2022, 8(3):331-368. [23] LEE C Y, XIE S, GALLAGHER P, et al. Deeply-supervised nets[C]//Proceedings of the 8 th International Conference on Artificial Intelligence and Statistics. San Diego:PMLR, 2015:562-570. [24] ZHANG C, YUE P, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:183-200. [25] CHEN Hao, SHI Zhenwei. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662. [26] LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-2:565-571. [27] CHEN Hao, QI Zipeng, SHI Zhenwei. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14 |