Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (9): 1572-1582.doi: 10.11947/j.AGCS.2025.20250181
• Geodesy and Navigation • Previous Articles Next Articles
Zhen LI1,2(
), Zhenghang HE1,3, Chuang SHI1,2,3
Received:2025-05-16
Revised:2025-07-29
Online:2025-10-10
Published:2025-10-10
About author:LI Zhen (1989—), male, PhD, assistant researcher, majors in spacecraft orbital dynamics, precise orbit determination, space debris, et al. E-mail: hpulizhen@163.com
Supported by:CLC Number:
Zhen LI, Zhenghang HE, Chuang SHI. A high-degree gravitational potential and gradient calculation method without singularities[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1572-1582.
| [1] | 温生林. 超低轨道卫星动力学建模与控制方法研究[D]. 长沙: 国防科学技术大学, 2016. |
| WEN Shenglin. Research on dynamics modeling and control methods for ultra-low orbit satellites[D]. Changsha: National University of Defense Technology, 2016. | |
| [2] | 陈喆, 卞鸿巍, 林泓一, 等. 惯性导航重力扰动影响与补偿方法综析[J]. 导航定位学报, 2025, 13(2): 28-36. |
| CHEN Zhe, BIAN Hongwei, LIN Hongyi, et al. Comprehensive analysis of gravity disturbance impact and compensation methods in inertial navigation systems[J]. Journal of Navigation and Positioning, 2025, 13(2): 28-36. | |
| [3] | 朱宏堡, 田野, 严恭敏, 等. 基于重力模型阶次自适应的实时重力补偿系统研究[J]. 导航定位与授时, 2024, 11(4): 55-64. |
| ZHU Hongbao, TIAN Ye, YAN Gongmin, et al. Research on real-time gravity compensation system based on gravity model order adaptation[J]. Navigation Positioning and Timing, 2024, 11(4): 55-64. | |
| [4] | 宁津生, 王正涛. 地球重力场研究现状与进展[J]. 测绘地理信息, 2013, 38(1): 1-7. |
| NING Jinsheng, WANG Zhengtao. Progress and present status of research on Earth's gravitational field[J]. Journal of Geomatics, 2013, 38(1): 1-7. | |
| [5] | PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the Earth gravitational model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): 1-38. |
| [6] | KOSTELECKÝ J, KLOKOĞNÍK J, BUCHA B, et al. Evaluation of gravity field model EIGEN-6C4 by means of various functions of gravity potential, and by GNSS/levelling[J]. Geoinformatics FCE CTU, 2015, 14(1): 7-28. |
| [7] | 夏哲仁, 石磐, 李迎春. 高分辨率区域重力场模型DQM2000[J]. 武汉大学学报(信息科学版), 2003, 28(S1): 124-128. |
| XIA Zheren, SHI Pan, LI Yingchun. A new series of high resolution Earth's gravity field models DQM2000[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 124-128. | |
| [8] | RHEE N, BANI-YAGHOUB M, LEIBSLE F M. Computing the associated Legendre polynomials through a matrix-eigen value algorithm[J]. Missouri Journal of Mathematical Sciences, 2022, 34(1): 30-39. |
| [9] | MÉTRIS G, XU Jin, WYTRZYSZCZAK I. Derivatives of the gravity potential with respect to rectangular coordinates[J]. Celestial Mechanics and Dynamical Astronomy, 1998, 71(2): 137-151. |
| [10] | PINES S. Uniform representation of the gravitational potential and its derivatives[J]. AIAA Journal, 1973, 11(11): 1508-1511. |
| [11] | CUNNINGHAM L E. On the computation of the spherical harmonic terms needed during the numerical integration of the orbital motion of an artificial satellite[J]. Celestial Mechanics, 1970, 2(2): 207-216. |
| [12] | LUNDBERG J B, SCHUTZ B E. Recursion formulas of Legendre functions for use with nonsingular geopotential models[J]. Journal of Guidance, Control, and Dynamics, 1988, 11(1): 31-38. |
| [13] | COLOMBO O L. Numerical methods for harmonic analysis on the sphere[R]. Ohio: The Ohio State University, 1981. |
| [14] | 张捍卫, 杨永勤, 张华, 等. 缔合勒让德函数的跨阶次递推公式[J]. 测绘科学, 2022, 47(9): 46-51. |
| ZHANG Hanwei, YANG Yongqin, ZHANG Hua, et al. Recurrence formulas between every other order and degree for associated Legendre functions[J]. Science of Surveying and Mapping, 2022, 47(9): 46-51. | |
| [15] | 吴星, 刘雁雨. 多种超高阶次缔合勒让德函数计算方法的比较[J]. 测绘科学技术学报, 2006, 23(3): 188-191. |
| WU Xing, LIU Yanyu. Comparison of computing methods of the ultra-high degree and order[J]. Journal of Geomatics Science and Technology, 2006, 23(3): 188-191. | |
| [16] | CLENSHAW C W. A note on the summation of Chebyshev series[J]. Mathematics of Computation, 1955, 9(51): 118-120. |
| [17] | HOLMES S A, FEATHERSTONE W E. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions[J]. Journal of Geodesy, 2002, 76(5): 279-299. |
| [18] | BALMINO G, BARRIOT J P, VALÈS N. Non-singular formulation of the gravity vector and gravity gradient tensor in spherical harmonics[J]. Manuscripta Geodaetica, 1990, 15(1): 11-16. |
| [19] | GILL E, MONTENBRUCK O. Satellite orbits: models, methods and applications[M]. Berlin: Springer, 2013. |
| [20] |
单建晨, 李姗姗, 范雕, 等. 超高阶全球地形球谐系数模型的构建方法与实现[J]. 测绘学报, 2023, 52(5): 748-759. DOI: .
doi: 10.11947/jAGCS.2023.20220003 |
|
SHAN Jianchen, LI Shanshan, FAN Diao, et al. Design and implementation of ultra-high-degree spherical harmonic model of Earth topography[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 748-759. DOI: .
doi: 10.11947/jAGCS.2023.20220003 |
|
| [21] |
张捍卫, 杨永勤, 李晓玲, 等. 第二类勒让德函数的重规格化及其优化[J]. 测绘学报, 2024, 53(7): 1298-1307. DOI: .
doi: 10.11947/j.AGCS.2024.20230283 |
|
ZHANG Hanwei, YANG Yongqin, LI Xiaoling, et al. Renormalization and its optimization of the Legendre function of the second kind[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1298-1307. DOI: .
doi: 10.11947/j.AGCS.2024.20230283 |
|
| [22] | FUKUSHIMA T. Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers[J]. Journal of Geodesy, 2012, 86(4): 271-285. |
| [23] | BALMINO G, VALES N, BONVALOT S, et al. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies[J]. Journal of Geodesy, 2012, 86(7): 499-520. |
| [24] | SNEEUW N, BUN R. Global spherical harmonic computation by two-dimensional Fourier methods[J]. Journal of Geodesy, 1996, 70(4): 224-232. |
| [25] | JEKELI C, LEE J K, KWON J H. On the computation and approximation of ultra-high-degree spherical harmonic series[J]. Journal of Geodesy, 2007, 81(9): 603-615. |
| [26] | FANTINO E, CASOTTO S. Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients[J]. Journal of Geodesy, 2009, 83(7): 595-619. |
| [27] | NOVIKOVA E, DMITRENKO A. Problems and methods of calculating the Legendre functions of arbitrary degree and order[J]. Geodesy and Cartography, 2016, 65(2): 283-312. |
| [28] | BERNHARD HOFMANN-WELLENHOF H M. Physical geodesy[M]. Nashville: Freeman and Company, 1967. |
| [29] | GAL S. An accurate elementary mathematical library for the IEEE floating point standard[J]. ACM Transactions on Mathematical Software (TOMS), 1991, 17(1): 26-45. |
| [30] | LEI Weiwei, LI Kai. Evaluating applicability of four recursive algorithms for computation of the fully normalized associated Legendre functions[J]. Journal of Applied Geodesy, 2016, 10(4): 267-275. |
| [31] | WIECZOREK M A, MESCHEDE M. SHTools: tools for working with spherical harmonics[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2574-2592. |
| [32] | BELIKOV M V. Spherical harmonic analysis and synthesis with the use of column-wise recurrence relations[J]. Manuscripta Geodaetica, 1991, 16(6): 384-410. |
| [33] | PAUL M K. Recurrence relations for integrals of associated Legendre functions[J]. Bulletin Géodésique, 1978, 52(3): 177-190. |
| [1] | . Scale factors in recursion of ultra-high degree and order Legendre functions and Horner’s scheme of summation [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4): 0-441. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||