[1] 朱永森, 曾永年, 张猛. 基于HJ卫星数据与面向对象分类的土地利用/覆盖信息提取[J]. 农业工程学报, 2017, 33(14):258-265. ZHU Yongsen, ZENG Yongnian, ZHANG Meng. Extract of land use/cover information based on HJ satellites data and object-oriented classification[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14):258-265. [2] JIN Suming, YANG Limin, ZHU Zhe, et al. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011[J]. Remote Sensing of Environment, 2017(195):44-55. [3] ANDREW M E, WULDER M A, NELSON T A. Potential contributions of remote sensing to ecosystem service assessments[J]. Progress in Physical Geography:Earth and Environment, 2014, 38(3):328-353. [4] HUANG Huabing, CHEN Yanlei, CLINTON N, et al. Mapping major land cover dynamics in Beijing using all Landsat images in google earth engine[J]. Remote Sensing of Environment, 2017(202):166-176. [5] CLOUDE S R, POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):68-78. [6] LEE J S, GRUNES M R, POTTIER E, et al. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4):722-731. [7] DABBOOR M, HOWELL S, SHOKR M, et al. The Jeffries-matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data[J]. International Journal of Remote Sensing, 2014, 35(19):6859-6873. [8] LUMSDON P, CLOUDE S R, WRIGHT G. Polarimetric classification of land cover for glen Affric radar project[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(6):404-412. [9] 赵泉华, 郭世波, 李晓丽, 等. 利用目标分解特征的全极化SAR海冰分类[J]. 测绘学报, 2018, 47(12):1609-1620. DOI:10.11947/j.AGCS.2018.20170551. ZHAO Quanhua, GUO Shibo, LI Xiaoli, et al. Polarimetric SAR sea ice classification based on target decompositional features[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12):1609-1620. DOI:10.11947/j.AGCS.2018.20170551. [10] 赵磊. 基于谱图分割的极化SAR影像面向对象分类方法研究[D]. 北京:中国林业科学研究院, 2014. ZHAO Lei. Object-based classification of polarimetric SAR images based on spectral graph partitioning[D]. Beijing:Chinese Academy of Forestry, 2014. [11] HABIBI M, SAHEBI M R, MAGHSOUDI Y, et al. Classification of polarimetric SAR data based on object-based multiple classifiers for urban land-cover[J]. Journal of the Indian Society of Remote Sensing, 2016, 44(6):855-863. [12] LI H T, GU Haiyan, HAN Y S, et al. Object-oriented classification of polarimetric SAR imagery based on statistical region merging and support vector machine[C]//Proceedings of 2008 International Workshop on Earth Observation and Remote Sensing Applications. Beijing, China:IEEE, 2008:1-6. [13] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. [14] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [15] ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12):7177-7188. [16] ZHOU Yu, WANG Haipeng, XU Feng, et al. Polarimetric SAR image classification using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1935-1939. [17] WANG Lei, XU Xin, DONG Hao, et al. Multi-pixel simultaneous classification of PolSAR image using convolutional neural networks[J]. Sensors, 2018, 18(3):E769. [18] HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland:Springer, 2014:297-312. [19] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39(4):640-651. [20] KRÄHENBÜHL P, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada, Spain:Curran Associates Inc., 2011:109-117. [21] ZHONG Ping, WANG Runsheng. Modeling and classifying hyperspectral imagery by CRFs with sparse higher order potentials[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2):688-705. [22] ZHOU Hao, ZHANG Jun, LEI Jun, et al. Image semantic segmentation based on FCN-CRF Model[C]//Proceedings of 2016 International Conference on Image, Vision and Computing. Portsmouth, UK:IEEE, 2016:9-14. [23] CLOUDE S R, POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):498-518. [24] DENG Xinping, LÓPEZ-MARTÍNEZ C, CHEN Jinsong, et al. Statistical modeling of polarimetric SAR data:a survey and challenges[J]. Remote Sensing, 2017, 9(4):348. [25] LEE J S, GRUNES M R, DE GRANDI G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2363-2373. [26] FREEMAN A, DURDEN S L. Three-component scattering model to describe polarimetric SAR data[C]//Proceedings of SPIE 1748, Radar Polarimetry. San Diego, CA:SPIE, 1993:213-224. [27] 龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18):194-201. LONG Mansheng, OUYANG Chunjuan, LIU Huan, et al. Image recognition of camellia Oleifera diseases based on convolutional neural network & transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18):194-201. [28] CAO Fang, HONG Wen, POTTIER E. An improvement for the unsupervised Wishart freeman classification with fully Polarimetric SAR data[C]//Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI:IEEE, 2010:320-322. [29] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA:IEEE, 2005:886-893. [30] ZHENG Shuai, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:1529-1537. |