Acta Geodaetica et Cartographica Sinica ›› 2018, Vol. 47 ›› Issue (12): 1609-1620.doi: 10.11947/j.AGCS.2018.20170551
Previous Articles Next Articles
ZHAO Quanhua, GUO Shibo, LI Xiaoli, LI Yu
Received:
2017-09-26
Revised:
2018-01-19
Online:
2018-12-20
Published:
2018-12-24
Supported by:
CLC Number:
ZHAO Quanhua, GUO Shibo, LI Xiaoli, LI Yu. Polarimetric SAR Sea Ice Classification Based on Target Decompositional Features[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12): 1609-1620.
[1] 杨磊, 常晓涛, 郭金运, 等. ENVISAT雷达高度计后向散射系数的极区海冰分布特性[J]. 测绘学报, 2013, 42(5):676-681. YANG Lei, CHANG Xiaotao, GUO Jinyun, et al. Research on Distribution Characteristics of Polar Sea Ice by ENVISAT Altimetry Backscatter Coefficient[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5):676-681. [2] WALSH J E. The Role of Sea Ice in Climatic Variability:Theories and Evidence[J]. Atmosphere-Ocean, 1983, 21(3):229-242. [3] TOGGWEILER J R, RUSSELL J L. Ocean Circulation in a Warming Climate[J]. Nature, 2008, 451(7176):286-288. [4] 沈杨, 郎文辉, 吴杰, 等. 结合MRF与ν-SVM的SAR海冰图像分类[J]. 遥感学报, 2015, 19(5):844-855. SHEN Yang, LANG Wenhui, WU Jie, et al. Combining MRF and ν-SVM for SAR Sea Ice Image Classification[J]. Journal of Remote Sensing, 2015, 19(5):844-855. [5] ZAKHVATKINA N, KOROSOV A, MUCKENHUBER S, et al. Operational Algorithm for Ice-water Classification on Dual-polarized RADARSAT-2 Images[J]. The Cryosphere, 2017, 11(1):33-46. [6] ZAKHVATKINA N Y, ALEXANDROV V Y, JOHANNESSEN O M, et al. Classification of Sea Ice Types in Envisat Synthetic Aperture Radar Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2587-2600. [7] DIERKING W. Mapping of Different Sea Ice Regimes Using Images From Sentinel-1 and ALOS Synthetic Aperture Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3):1045-1058. [8] SANDVEN S, JOHANNESSEN O M, MILES M W, et al. Barents Sea Seasonal Ice Zone Features and Processes from ERS 1 Synthetic Aperture Radar:Seasonal Ice Zone Experiment 1992[J]. Journal of Geophysical Research:Oceans, 1999, 104(C7):15843-15857. [9] CLAUSI D A, YUE Bing. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(1):215-228. [10] CLAUSI D A. Comparison and Fusion of Co-occurrence, Gabor and MRF Texture Features for Classification of SAR Sea-ice Imagery[J]. Atmosphere-Ocean, 2001, 39(3):183-194. [11] LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised Classification using Polarimetric Decomposition and the Complex Wishart Classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2249-2258. [12] 郎丰铠, 杨杰, 赵伶俐, 等. 基于Freeman散射熵和各向异性度的极化SAR影像分类算法研究[J]. 测绘学报, 2012, 41(4):556-562. LANG Fengkai, YANG Jie, ZHAO Lingli, et al. Polarimetric SAR Data Classification with Freeman Entropy and Anisotropy Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4):556-562. [13] NEZRY E, LOPES A, DUCROT-GAMBART D, et al. Supervised Classification of K-distributed SAR Images of Natural Targets and Probability of Error Estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5):1233-1242. [14] DENG Xinping, LOPEZ-MARTINEZ C, CHEN Jinsong, et al. Statistical Modeling of Polarimetric SAR Data:A Survey and Challenges[J]. Remote Sensing, 2017, 9(4):348. [15] LEE J S, POTTIER E. Polarimetric Radar Imaging:From Basics to Applications[M]. Boca Raton:CRC Press, 2009. [16] CLOUDE S R, POTTIER E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):68-78. [17] WAKABAYASHI H, MATSUOKA T, NAKAMURA K, et al. Polarimetric Characteristics of Sea Ice in the Sea of Okhotsk Observed by Airborne L-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2412-2425. [18] 张晰, 张杰, 孟俊敏, 等. 基于极化散射特征的极化合成孔径雷达海冰分类方法研究:以渤海海冰分类为例[J]. 海洋学报, 2013, 35(5):95-101. ZHANG Xi, ZHANG Jie, MENG Junmin, et al. Polarimetric Scattering Characteristics Based Sea Ice Types Classification by Polarimetric Synthetic Aperture Radar:Taking Sea Ice in the Bohai Sea for Example[J]. Acta Oceanologica Sinica, 2013, 35(5):95-101. [19] SINGHA S. Arctic Sea Ice Characterization Using Fully Polarimetric Air-borne and Space-borne Synthetic Aperture Radar[C]//Proceedings of CIRFA Seminar. Tromsö, Norway:CIRFA, 2017. [20] MOEN M A N, FERRO-FAMIL L, DOULGERIS A P, et al. Polarimetric Decomposition Analysis of Sea Ice Data[C]//Proceedings of POLinSAR 2013 Workshop. Frascati, Italy:[s.n.], 2013. [21] MOEN M A N, DOULGERIS A P, ANFINSEN S N, et al. Comparison of Automatic Segmentation of Full Polarimetric SAR Sea Ice Images with Manually Drawn Ice Charts[J]. The Cryosphere, 2013, 7(3):2595-2634. [22] MOEN M A, ANFINSEN S N, DOULGERIS A P, et al. Assessing Polarimetric SAR Sea-ice Classifications Using Consecutive Day Images[J]. Annals of Glaciology, 2015, 56(69):285-294. [23] LEE J S, GRUNES M R, DE GRANDI G. Polarimetric SAR Speckle Filtering and Its Implication for Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5):2363-2373. [24] ELTOFT T, DOULGERIS A P, GRAHN J. Model-based Polarimetric Decomposition of Arctic Sea Ice[C]//Proceedings of EUSAR 2014; 10th European Conference on Synthetic Aperture Radar. Berlin, Germany:IEEE, 2014. [25] ARIENZO A. Physical and Statistical Based Decomposition of Polarimetric Synthetic Aperture Radar Images of Arctic Seaice[D]. Tromso:The Arctic University of Norway, 2015. [26] AN Wentao, CUI Yi, YANG Jian. Three-component Model-based Decomposition for Polarimetric SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6):2732-2739. [27] BHATTACHARYA A, MUHURI A, DE S, et al. Modifying the Yamaguchi Four-component Decomposition Scattering Powers Using a Stochastic Distance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7):3497-3506. [28] MORIO J, REFREGIER P, GOUDAIL F, et al. Application of Information Theory Measures to Polarimetric and Interferometric SAR Images[C]//Proceedings of Physics in Signal and Image Processing 2007. Mulhounse, France:[s.n.], 2007. [29] WOLD S, ESBENSEN K, GELADI P. Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3):37-52. [30] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning Representations by Back-propagating Errors[J]. Nature, 1986, 323(6088):533-536. [31] MARINO A, CLOUDE S R, WOODHOUSE I H. Detecting Depolarized Targets Using a New Geometrical Perturbation Filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3787-3799. [32] ROWEIS S T, SAUL L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000, 290(5500):2323-2326. |
[1] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[2] | YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1059-1067. |
[3] | LI Shuaixin, LI Jiuren, TIAN Bin, CHEN Long, WANG Li, LI Guangyun. A laser SLAM method for unmanned vehicles in point cloud degenerated tunnel environments [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1487-1499. |
[4] | SUN Xiliang, GUAN Hongcan, SU Yanjun, XU Guangcai, GUO Qinghua. A tightly coupled SLAM method for precise urban mapping [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11): 1585-1593. |
[5] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[6] | ZHAO Quanhua, XIE Kailang, WANG Guanghui, LI Yu. Land cover classification of polarimetric SAR with fully convolution network and conditional random field [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 65-78. |
[7] | ZHANG Ruichen, BIAN Shaofeng, LIU Yanchun, LI Houpu. Widespread bathymetric outliers detection and elimination based on conditional variational autoencoder generative adversarial network [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1182-1189. |
[8] | YU Anzhu, LIU Bing, XING Zhipeng, YANG Fan, YANG Qimiao. Salient feature extraction method for hyperspectral image classification [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 985-995. |
[9] | WANG Huabin, HAN Min, WANG Guanghui, LI Yu. Surface features extraction in remote sensing images based on architecture-variant CNN [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5): 583-596. |
[10] | CHEN Xiaoyong, HE Haiqing, ZHOU Junchao, AN Puyang, CHEN Ting. Progress and future of image matching in low-altitude photogrammetry [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1595-1603. |
[11] | DI Kaichang, WAN Wenhui, ZHAO Hongying, LIU Zhaoqin, WANG Runzhi, ZHANG Feizhou. Progress and Applications of Visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 770-779. |
[12] | CHEN Chi, YANG Bisheng, TIAN Mao, LI Jianping, ZOU Xianghong, WU Weitong, SONG Yiheng. Automatic Registration of Vehicle-borne Mobile Mapping Laser Point Cloud and Sequent Panoramas [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 215-224. |
[13] | LI Minglei, LIU Shaochuang, YANG Huan, QI Chen. Bilevel Optimization for Scene Segmentation of LiDAR Point Cloud [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 269-274. |
[14] | ZHANG Haibo, WANG Changcheng, ZHU Jianjun, FU Haiqiang. Forest Above-ground Biomass Estimation for Rugged Terrain by Using ESAR Polarization Data [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1353-1362. |
[15] | HOU Banghuan, WANG Kun, YAO Minli, JIA Weimin, WANG Rong. Semi-supervised Spatial-spectral Discriminant Analysis for Hyperspectral Image Classification [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1098-1106. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 885
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1469
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||