[1] HOUGHTON R A. Aboveground Forest Biomass and the Global Carbon Balance[J]. Global Change Biology, 2005, 11(6):945-958. [2] 解清华, 汪长城, 朱建军, 等. 顾及地形因素的S-RVOG模型和PD相干最优算法联合反演植被高度[J]. 测绘学报, 2015, 44(6):686-693, 701. DOI:10.11947/j.AGCS.2015.20130731. XIE Qinghua, WANG Changcheng, ZHU Jianjun, et al. Forest Height Inversion by Combining S-RVOG Model with Terrain Factor and PD Coherence Optimization[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6):686-693, 701. DOI:10.11947/j.AGCS.2015.20130731. [3] 刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62-74. LIU Qian, YANG Le, LIU Qinhuo, et al. Review of Forest Above Ground Biomass Inversion Methods Based on Remote Sensing Technology[J]. Journal of Remote Sensing, 2015, 19(1):62-74. [4] 黄克标, 庞勇, 舒清态, 等. 基于ICESat GLAS的云南省森林地上生物量反演[J]. 遥感学报, 2013, 17(1):165-179. HUANG Kebiao, PANG Yong, SHU Qingtai, et al. Above Ground Forest Biomass Estimation Using ICESat GLAS in Yunnan, China[J]. Journal of Remote Sensing, 2013, 17(1):165-179. [5] GHASEMI N, SAHEBI M, MOHAMMADZADEH A. A Review on Biomass Estimation Methods Using Synthetic Aperture Radar Data[J]. International Journal of Geomatics and Geosciences, 2011, 4(1):776-788. [6] 冯宗炜, 陈楚莹, 张家武, 等. 湖南会同地区马尾松林生物量的测定[J]. 林业科学, 1982, 18(2):127-134. FENG Zongwei, CHEN Chuying, ZHANG Jiawu, et al. Determination of Biomass of Pinus Massoniana Stand in Huitong County, Hunan Province[J]. Scientia Silvae Sinicae, 1982, 18(2):127-134. [7] BACCINI A, GOETZ S J, WALKER W S, et al. Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-density Maps[J]. Nature Climate Change, 2012, 2(3):182-185. [8] BOUDREAU J, NELSON R F, MARGOLIS H A, et al. Regional Aboveground Forest Biomass Using Airborne and Spaceborne LiDAR in Québec[J]. Remote Sensing of Environment, 2008, 112(10):3876-3890. [9] KINDERMANN G E, MCCALLUM I, FRITZ S, et al. A Global Forest Growing Stock, Biomass and Carbon Map Based on FAO Statistics[J]. Silva Fennica, 2008, 42(3):387-396. [10] 王新云, 郭艺歌, 何杰. 基于多源遥感数据的草地生物量估算方法[J]. 农业工程学报, 2014, 30(11):159-166. WANG Xingyun, GUO Yige, HE Jie. Estimation of Above-ground Biomass of Grassland Based on Multi-source Remote Sensing Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11):159-166. [11] SINHA S, JEGANATHAN C, SHARMA L K, et al. A Review of Radar Remote Sensing for Biomass Estimation[J]. International Journal of Environmental Science and Technology, 2015, 12(5):1779-1792. [12] ALAPPAT V O, JOSHI A K, KRISHNAMURTHY Y V N. Tropical Dry Deciduous Forest Stand Variable Estimation Using SAR Data[J]. Journal of the Indian Society of Remote Sensing, 2011, 39(4):583-589. [13] HAMDAN O, AZIZ H K, RAHMAN K A. Remotely Sensed L-band SAR Data for Tropical Forest Biomass Estimation[J]. Journal of Tropical Forest Science, 2011, 23(3):318-327. [14] MINH D H T, TOAN T L, TEBALDINI S, et al. Assessment of the P-and L-band SAR Tomography for the Characterization of Tropical Forests[C]//Proceedings of 2015 IEEE Transactions on Geoscience and Remote Sensing. Milan, Italy:IEEE, 2015, 15(2):2931-2934. [15] SOJA M J, SANDBERG G, ULANDER L M H. Topographic Correction for Biomass Retrieval from P-band SAR Data in Boreal Forests[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Honolulu:IEEE, 2010, 15(5):4776-4779. [16] SMALL D. Flattening Gamma:Radiometric Terrain Correction for SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8):3081-3093. [17] WEGMULLER U. Automated Terrain Corrected SAR Geocoding[C]//Proceedings of 1999 IEEE International Geoscience and Remote Sensing Symposium. Hamburg:IEEE, 1999(3):1712-1714. [18] LOEW A, MAUSER W. Generation of Geometrically and Radiometrically Terrain Corrected SAR Image Products[J]. Remote Sensing of Environment, 2007, 106(3):337-349. [19] FREY O, SANTORO M, WERNER C L, et al. DEM-based SAR Pixel-area Estimation for Enhanced Geocoding Refinement and Radiometric Normalization[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1):48-52. [20] 冯琦, 陈尔学, 李增元, 等. 基于机载P-波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3):10-22. FENG Qi, CHEN Erxue, LI Zengyuan, et al. Forest Above-ground Biomass Estimation Method for Rugged Terrain Based on Airborne P-band PolSAR Data[J]. Scientia Silvae Sinicae, 2016, 52(3):10-22. [21] KUGLER F, LEE S K, HAJNSEK I, et al. Forest Height Estimation by Means of Pol-InSAR Data Inversion:The Role of the Vertical Wave Number[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10):5294-5311. [22] SANDBERG G, ULANDER L M H, FRANSSON J E S, et al. L-band and P-band Backscatter Intensity for Biomass Retrieval in Hemiboreal Forest[J]. Remote Sensing of Environment, 2011, 115(11):2874-2886. [23] 黎夏, 叶嘉安, 王树功, 等. 红树林湿地植被生物量的雷达遥感估算[J]. 遥感学报, 2006, 10(3):388-396. LI Xia, YE Jiaan, WANG Shugong, et al. Estimating Mangrove Wetland Biomass Using Radar Remote Sensing[J]. Journal of Remote Sensing, 2006, 10(3):388-396. [24] ASKNE J, DAMMERT P B G, ULANDER L M H, et al. C-band Repeat-pass Interferometric SAR Observations of the Forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):25-35. [25] SANTORO M, ASKNE J, SMITH G, et al. Stem Volume Retrieval in Boreal Forests from ERS-1/2 Interferometry[J]. Remote Sensing of Environment, 2002, 81(1):19-35. [26] ASKNE J, SANTORO M. Multitemporal Repeat Pass SAR Interferometry of Boreal Forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1219-1228. [27] 张风雷. 遗传算法与最小二乘法在实验数据处理中的对比研究[J]. 大学物理, 2007, 26(6):32-34. ZHANG Fenglei. The Comparative Analysis Between the GA and the Method of Least Squares in Data Processing[J]. College Physics, 2007, 26(6):32-34. |