[1] JIN Shuanggen, LUO O F. Variability and climatology of PWV from global 13-year GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7):1918-1924. [2] 姚宜斌, 张顺, 孔建. GNSS空间环境学研究进展和展望[J]. 测绘学报, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. YAO Yibin, ZHANG Shun, KONG Jian. Research progress and prospect of GNSS space environment science[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1408-1420. DOI:10.11947/j.AGCS.2017.20170333. [3] SUPARTA W, RAHMAN R. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood[J]. Atmospheric Research, 2016, 168:205-219. [4] ZHAO Qingzhi, YAO Yibin, YAO Wanqiang. GPS-based PWV for precipitation forecasting and its application to a typhoon event[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167:124-133. [5] JIANG Weiping, YUAN Peng, CHEN Hua, et al. Annual variations of monsoon and drought detected by GPS:A case study in Yunnan, China[J]. Scientific Reports, 2017, 7(1):5874. [6] BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology:remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research, 1992, 97(D14):15787-15801. [7] 李建国, 毛节泰, 李成才, 等. 使用全球定位系统遥感水汽分布原理和中国东部地区加权"平均温度"的回归分析[J]. 气象学报, 1999, 57(3):283-292. LI Jianguo, MAO Jietai, LI Chengcai, et al. The approach to remote sensing of water vapor based on GPS and linear regression Tm in eastern region of China[J]. Acta Meteorologica Sinica, 1999, 57(3):283-292. [8] 陈永奇, 刘焱雄, 王晓亚, 等. 香港实时GPS水汽监测系统的若干关键技术[J]. 测绘学报, 2007, 36(1):9-12, 25. CHEN Yongqi, LIU Yanxiong, WANG Xiaoya, et al. GPS real-time estimation of precipitable water vapor:Hong Kong experiences[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1):9-12, 25. [9] 王晓英, 戴仔强, 曹云昌, 等. 中国地区地基GPS加权平均温度Tm统计分析[J]. 武汉大学学报(信息科学版), 2011, 36(4):412-416. WANG Xiaoying, DAI Ziqiang, CAO Yunchang, et al. Weighted mean temperature Tm statistical analysis in ground-based GPS in China[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4):412-416. [10] YAO Yibin, ZHANG Bao, XU Chaoqian, et al. Analysis of the global Tm-Ts correlation and establishment of the latitude-related linear model[J]. Chinese Science Bulletin, 2014, 59(19):2340-2347. [11] YAO Yibin, ZHANG Bao, XU Chaoqian, et al. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology[J]. Journal of Geodesy, 2014, 88(3):273-282. [12] DING Maohua. A neural network model for predicting weighted mean temperature[J]. Journal of Geodesy, 2018, 92(10):1187-1198. [13] 姚宜斌, 孙章宇, 许超钤. Bevis公式在不同高度面的适用性以及基于近地大气温度的全球加权平均温度模型[J]. 测绘学报, 2019, 48(3):276-285. DOI:10.11947/j.AGCS.2019.20180160. YAO Yibin, SUN Zhangyu, XU Chaoqian. Applicability of Bevis formula at different height level and global weighted mean temperature model based on near-earth atmospheric temperature[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3):276-285. DOI:10.11947/j.AGCS.2019.20180160. [14] LU Cuixian, LI Xingxing, NILSSON T, et al. Real-time retrieval of precipitable water vapor from GPS and BeiDou observations[J]. Journal of Geodesy, 2015, 89(9):843-856. [15] LI Xingxing, DICK G, LU Cuixian, et al. Multi-GNSS meteorology:real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6385-6393. [16] LU Cuixian, LI Xingxing, GE Maorong, et al. Estimation and evaluation of real-time precipitable water vapor from GLONASS and GPS[J]. GPS Solutions, 2016, 20(4):703-713. [17] YUAN Yubin, ZHANG Kefei, ROHM W, et al. Real-time retrieval of precipitable water vapor from GPS precise point positioning[J]. Journal of Geophysical Research, 2014, 119(16):10044-10057. [18] EMARDSON T R, DERKS H J P. On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere[J]. Meteorological Applications, 2000, 7(1):61-68. [19] 姚朝龙, 罗志才, 刘立龙, 等. 顾及地形起伏的中国低纬度地区湿延迟与可降水量转换关系研究[J]. 武汉大学学报(信息科学版), 2015, 40(7):907-912. YAO Chaolong, LUO Zhicai, LIU Lilong, et al. On the relation between the wet delay and the water precipitable vapor in consideration of topographic relief in the low-latitude region of China[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):907-912. [20] YAO Yibin, ZHANG Bao, YUE Shunqiang, et al. Global empirical model for mapping zenith wet delays onto precipitable water[J]. Journal of Geodesy, 2013, 87(5):439-448. [21] YAO Yibin, XU Chaoqian, ZHANG Bao, et al. GTm-Ⅲ:a new global empirical model for mapping zenith wet delays onto precipitable water vapour[J]. Geophysical Journal International, 2014, 197(1):202-212. [22] HE Changyong, WU Suqin, WANG Xiaoming, et al. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding[J]. Atmospheric Measurement Techniques, 2017, 10(6):2045-2060. [23] HUANG Liangke, JIANG Weiping, LIU Lilong, et al. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor[J]. Journal of Geodesy, 2019, 93(2):159-176. [24] ZHANG Hongxing, YUAN Yunbin, LI Wei, et al. GPS PPP-derived precipitable water vapor retrieval based on Tm/Ps from multiple sources of meteorological data sets in China[J]. Journal of Geophysical Research, 2017, 122(8):4165-4183. [25] YAO Yibin, SUN Zhangyu, XU Chaoqian, et al. Extending a model for water vapor sounding by ground-based GNSS in the vertical direction[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 179:358-366. [26] BÖHM J, MÖLLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3):433-441. [27] 章传银, 郭春喜, 陈俊勇, 等. EGM 2008地球重力场模型在中国大陆适用性分析[J]. 测绘学报, 2009, 38(4):283-289. ZHANG Chuanyin, GUO Chunxi, CHEN Junyong, et al. EGM 2008 and its application analysis in Chinese mainland[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4):283-289. |