[1] CHEHATA N, ORNY C, BOUKIR S, et al. Object-based change detection in wind storm-damaged forest using high-resolution multispectral images[J]. International Journal of Remote Sensing, 2014, 35(13): 4758-4777. [2] ZHANG Zhiqiang, ZHANG Xinchang, SUN Ying, et al. Road centerline extraction from very-high-resolution aerial image and LiDAR data based on road connectivity[J]. Remote Sensing, 2018, 10(8): 1284. [3] GU Haiyan, LI Haitao, YAN Li, et al. An object-based semantic classification method for high resolution remote sensing imagery using ontology[J]. Remote Sensing, 2017, 9(4): 329. [4] 刘婧, 李培军. 结合结构和光谱特征的高分辨率影像分割方法[J]. 测绘学报, 2014, 43(5): 466-473. LIU Jing, LI Peijun. A High resolution image segmentation method by combined structural and spectral characteristics[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 466-473. [5] 周成虎, 骆剑承. 高分辨率卫星遥感影像地学计算[M]. 北京: 科学出版社, 2009: 14-15. ZHOU Chenghu, LUO Jiancheng. Geo-computation of high-resolution satellite remote sensing image[M]. Beijing: Science Press, 2009: 14-15. [6] 董志鹏, 王密, 李德仁. 一种融合超像素与最小生成树的高分辨率遥感影像分割方法[J]. 测绘学报, 2017, 46(6): 734-742. DOI: 10.11947/j.AGCS.2017.20160514. DONG Zhipeng, WANG Mi, LI Deren. A high resolution remote sensing image segmentation method by combining superpixels with minimum spanning tree[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6): 734-742. DOI: 10.11947/j.AGCS.2017.20160514. [7] HUANG Xin, ZHANG Liangpei. A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy[J]. International Journal of Remote Sensing, 2009, 30(12): 3205-3221. [8] MIAO Ziming, FU Kun, SUN Hao, et al. Automatic water-body segmentation from high-resolution satellite images via deep networks[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15(4): 602-606. [9] ZHANG Libao, ZHANG Yingying. Airport detection and aircraft recognition based on two-layer saliency model in high spatial resolution remote-sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10(4): 1511-1524. [10] REN Xiaofeng, MALIK J. Learning a classification model for segmentation[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003: 10-17. [11] WANG Murong, LIU Xiabi, GAO Yixuan, et al. Superpixel segmentation: a benchmark[J]. Signal Processing: Image Communication, 2017, 56: 28-39. [12] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274-2282. [13] COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(5): 603-619. [14] 张建廷, 张立民. 结合光谱和纹理的高分辨率遥感图像分水岭分割[J]. 武汉大学学报(信息科学版), 2017, 42(4): 449-455, 467. ZHANG Jianting, ZHANG Limin. A watershed algorithm combining spectral and texture information for high resolution remote sensing image segmentation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 449-455, 467. [15] XIANG Shiming, PAN Chunhong, NIE Feiping, et al. TurboPixel segmentation using Eigen-images[J]. IEEE Transactions on Image Processing, 2010, 19(11): 3024-3034. [16] THEILER J P, GISLER G. Contiguity-enhanced k-means clustering algorithm for unsupervised multispectral image segmentation[C]//Proceedings Volume 3159, Algorithms, Devices, and Systems for Optical Information Processing. San Diego, CA, United States:SPIE, 1997: 108-118. [17] FAN Jianchao, WANG Jun. A two-phase fuzzy clustering algorithm based on neurodynamic optimization with its application for PolSAR image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(1): 72-83. [18] VERMA H, AGRAWAL R K, SHARAN A. An improved intuitionistic fuzzy C-means clustering algorithm incorporating local information for brain image segmentation[J]. Applied Soft Computing, 2016, 46: 543-557. [19] ILIADIS L S, VANGELOUDH M, SPARTALIS S. An intelligent system employing an enhanced fuzzy C-means clustering model: application in the case of forest fires[J]. Computers & Electronics in Agriculture, 2010, 70(2): 276-284. [20] LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027-3041. [21] 陈放, 杨艳. 基于超像素和模糊聚类的医学超声图像分割算法[J]. 半导体光电, 2016, 37(1): 146-150. CHEN Fang, YANG Yan. Segmentation of medical ultrasound images based on superpixel and fuzzy clustering method[J]. Semiconductor Optoelectronics, 2016, 37(1): 146-150. [22] LEI Tao, JIA Xiaohong, ZHANG Yanning, et al. Superpixel-based fast fuzzy C-means clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(9): 1753-1766. [23] VINCENT L. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms[J]. IEEE Transactions on Image Processing, 1993, 2(2): 176-201. [24] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4): 448-459. DOI: 10.11947/j.AGCS.2019.20180206. JI Shunping, WEI Shiqing. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4): 448-459.DOI: 10.11947/j.AGCS.2019.20180206. [25] UNNIKRISHNAN R, PANTOFARU C, HEBERT M. Toward objective evaluation of image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(6): 929-944. |