Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (6): 811-828.doi: 10.11947/j.AGCS.2022.20220152
• Academician Forum • Previous Articles Next Articles
LIU Jingnan1,2, LUO Yarong1, GUO Chi1,2, GAO Kefu1,2
Received:2022-02-28
Revised:2022-04-11
Online:2022-06-20
Published:2022-07-02
Supported by:CLC Number:
LIU Jingnan, LUO Yarong, GUO Chi, GAO Kefu. PNT intelligence and intelligent PNT[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828.
| [1] HAWKING S. A brief history of time:from big bang to black holes[M]. New York:Random House, 2009. [2] PENROSE R. The road to reality:a complete guide to the laws of the universe[M]. New York:Random House, 2005. [3] CRACRAFT J, DONOGHUE M J, DONOGHUE M M, et al. Assembling the tree of life[M]. New York:Oxford University Press, 2004. [4] PULIDO C, RYAN T A. Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals[J]. Science Advances, 2021, 7(49):eabi9027. [5] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature,2016, 529(7587):484-489. [6] GAGLIANO M, GRIMONPREZ M, DEPCZYNSKI M, et al. Tuned in:plant roots use sound to locate water[J]. Oecologia, 2017, 184(1):151-160. [7] HEIL M. Nightshade wound secretion:the world's simplest extrafloral nectar?[J]. Trends in Plant Science, 2016, 21(8):637-638. [8] BALUSKA F, MANCUSO S, VOLKMANN D, BARLOW PW. The 'root-brain' hypothesis of Charles and Francis Darwin:revival after more than 125 years[J]. Plant Signaling & Behavior, 2009, 4(12):1121-1127. [9] MOTTE H, VANNESTE S, BEECKMAN T. Molecular and environmental regulation of root development[J]. Annual Review of Plant Biology, 2019, 70(1):465-488. [10] LECUN Y. 1.1 deep learning hardware:past, present, and future[C]//Proceedings of 2019 IEEE International Solid-State Circuits Conference-(ISSCC). San Francisco, CA:IEEE, 2019:12-19. [11] GUPTA A, SAVARESE S, GANGULI S, et al. Embodied intelligence via learning and evolution[J]. Nature Communications, 2021, 12(1):5721. [12] GORDON J, MASELLI A, LANCIA G L, et al. The road towards understanding embodied decisions[J]. Neuroscience & Biobehavioral Reviews, 2021, 131:722-736. [13] GEORGE E A, BROCKMANN A. Social modulation of individual differences in dance communication in honey bees[J]. Behavioral Ecology and Sociobiology, 2019, 73(4):1-14. [14] O'KEEFE J, DOSTROVSKY J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat[J]. Brain Research, 1971, 34(1):171-175. [15] HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex[J]. Nature, 2005, 436(7052):801-806. [16] MACDONALD C J, LEPAGE K Q, EDEN U T, et al. Hippocampal "time cells" bridge the gap in memory for discontiguous events[J]. Neuron, 2011, 71(4):737-749. [17] MCCARTHY J. Mathematical logic in artificial intelligence[J]. Daedalus, 1988, 117(1):297-311. [18] OELSCHLÄGER H H A. The dolphin brain-a challenge for synthetic neurobiology[J]. Brain Research Bulletin, 2008, 75(2-4):450-459. [19] WILTSCHKO W, WILTSCHKO R. Homing pigeons as a model for avian navigation?[J]. Journal of Avian Biology, 2017, 48(1):66-74. [20] ZHANG Yigui, YU Cong, CHEN Lixin, et al. Performance of Azure-winged magpies in Aesop's fable paradigm[J]. Scientific Reports, 2021, 11(1):804. DOI:10.1038/s41598-020-80452-5. [21] SEELIG J D, JAYARAMAN V. Neural dynamics for landmark orientation and angular path integration[J]. Nature, 2015, 521(7551):186-191. [22] SHIOZAKI H M, KAZAMA H. Parallel encoding of recent visual experience and self-motion during navigation in Drosophila[J]. Nature Neuroscience, 2017, 20(10):1395-1403. [23] FISHER Y E, LU J, D'ALESSANDRO I, et al. Sensorimotor experience remaps visual input to a heading-direction network[J]. Nature, 2019, 576(7785):121-125. [24] KIM S S, HERMUNDSTAD A M, ROMANI S, et al. Generation of stable heading representations in diverse visual scenes[J]. Nature, 2019, 576(7785):126-131. [25] RANCK J L, LETELLIER L, SHECHTER E, et al. X-ray analysis of the kinetics of Escherichia coli lipid and membrane structural transitions[J]. Biochemistry, 1984, 23(21):4955-4961. [26] JACOBSJ, WEIDEMANN C T, MILLER J F,et al. Direct recordings of grid-like neuronal activity in human spatial navigation[J]. Nature Neuroscience, 2013, 16(9):1188-1190. [27] KRAUS B J, ROBINSON II R J, WHITE J A, et al. Hippocampal "time cells":time versus path integration[J]. Neuron, 2013, 78(6):1090-1101. [28] WANG Yingxue, ROMANI S, LUSTIGB, et al. Theta sequences are essential for internally generated hippocampal firing fields[J]. Nature Neuroscience, 2015, 18(2):282-288. [29] BANINO A, BARRY C, URIA B, et al. Vector-based navigation using grid-like representations in artificial agents[J]. Nature, 2018, 557(7705):429-433. [30] 郭迟, 罗宾汉, 李飞, 等. 类脑导航算法:综述与验证[J]. 武汉大学学报(信息科学版), 2021, 46(12):1819-1831. GUO Chi, LUO Binhan, LI Fei, et al. Review and verification for brain-like navigation algorithm[J].Geomatics and Information Science of Wuhan University, 2021, 46(12):1819-1831. [31] GARM A, NILSSON D E. Visual navigation in starfish:first evidence for the use of vision and eyes in starfish[J]. Proceedings of the Royal Society B:Biological Sciences, 2014, 281(1777):20133011. [32] PAPI F. Pigeon navigation:solved problems and open questions[J]. Monitore Zoologico Italiano-Italian Journal of Zoology, 1986, 20(4):471-517. [33] GUILFORD T, BIRO D. Route following and the pigeon's familiar area map[J]. Journal of Experimental Biology, 2014, 217(2):169-179. [34] COLLETT M, COLLETT T S, BISCH S, et al. Local and global vectors in desert ant navigation[J]. Nature, 1998, 394(6690):269-272. [35] ROSSEL S, WEHNER R. How bees analyse the polarization patterns in the sky[J]. Journal of Comparative Physiology A, 1984, 154(5):607-615. [36] REPPERT S M, ZHU Haisun, WHITE R H. Polarized light helps monarch butterflies navigate[J]. Current Biology, 2004, 14(2):155-158. [37] 胡小平, 毛军, 范晨, 等. 仿生导航技术综述[J]. 导航定位与授时, 2020, 7(4):1-10. DOI:10.19306/j.cnki.2095-8110.2020.04.001. HU Xiaoping, MAO Jun, FAN Chen, et al. Bionic navigation technology:a survey[J].Navigation Positioning and Timing, 2020, 7(4):1-10. DOI:10.19306/j.cnki.2095-8110.2020.04.001. [38] DUPEYROUX J, VIOLLET S, SERRES J R. An ant-inspired celestial compass applied to autonomous outdoor robot navigation[J]. Robotics and Autonomous Systems, 2019, 117:40-56. [39] DUPEYROUX J, SERRES J R, VIOLLET S. AntBot:a six-legged walking robot able to home like desert ants in outdoor environments[J]. Science Robotics, 2019, 4(27):eaau0307. [40] LIAO Fuyou, ZHOU Zheng, KIM B J, et al. Bioinspired in-sensor visual adaptation for accurate perception[J]. Nature Electronics, 2022, 5(2):84-91. [41] ZHANG Ming, ZHANG Mingming, CHEN Yiming, et al. IMU data processing for inertial aided navigation:a recurrent neural network based approach[C]//Proceedings of 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an:IEEE, 2021:3992-3998. [42] HERATH S, YAN Hang, FURUKAWA Y. Ronin:robust neural inertial navigation in the wild:benchmark, evaluations, & new methods[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris:IEEE, 2020:3146-3152. [43] ZHOU Yao, WAN Guowei, HOU Shenhua, et al. DA4AD:end-to-end deep attention-based visual localization for autonomous driving[C]//Proceedings of the 16th European Conference on Computer Vision. Glasgow:Springer, 2020:271-289. [44] WANG Sen, CLARK R, WEN Hongkai, et al. End-to-end, sequence-to-sequence probabilistic visual odometry through deep neural networks[J]. The International Journal of Robotics Research, 2018, 37(4-5):513-542. [45] YIN Zhichao, SHI Jianping. Geonet:unsupervised learning of dense depth, optical flow and camera pose[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:1983-1992. [46] CLARK R, WANG Sen, WEN Hongkai, et al. Vinet:Visual-inertial odometry as a sequence-to-sequence learning problem[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Infosys:AAAI, 2017, 31(1):3995-4001. [47] MORIMOTO J, DOYA K. Reinforcement learning state estimator[J]. Neural Computation, 2007, 19(3):730-756. [48] HU Liang, TANG Yujie, ZHOU Zhipeng, et al. Reinforcement learning for orientation estimation using inertial sensors with performance guarantee[C]//Proceedings of 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an:IEEE, 2021:10243-10249. [49] YANG Shichao, SCHERER S. CubeSLAM:Monocular 3-D object SLAM[J]. IEEE Transactions on Robotics, 2019, 35(4):925-938. [50] NICHOLSON L, MILFORD M, SVNDERHAUF N. Quadric SLAM:dual quadrics from object detections as landmarks in object-oriented SLAM[J]. IEEE Robotics and Automation Letters, 2019, 4(1):1-8. [51] WORTSMAN M, EHSANI K, RASTEGARI M, et al. Learning to learn how to learn:self-adaptive visual navigation using meta-learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA,USA:IEEE, 2020. [52] SAVVA M, CHANG A X, DOSOVITSKIY A, et al. MINOS:multimodal indoor simulator for navigation in complex environments[EB/OL]. (2017-12-11)[2022-02-07].https://arxiv.org/abs/1712.03931. [53] WU Yi, WU Yuxin, GKIOXARI G, et al. Building generalizable agents with a realistic and rich 3D environment[J]. (2018-04-08)[2022-02-15]. https://arxiv.org/abs/1801.02209. [54] ZHU Yuke, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore:IEEE, 2017:3357-3364. [55] THOMASON J, MURRAY M, CAKMAK M, et al. Vision-and-dialog navigation[C]//Proceedings of 2020 Conference on Robot Learning.[S.l.]:PMLR, 2020:394-406. [56] ZHU Yi, ZHU Fengda, ZHAN Zhaohuan, et al. Vision-dialog navigation by exploring cross-modal memory[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA:IEEE, 2020:10730-10739. [57] ZHU Yi, WENG Yue, ZHU Fengda, et al. Self-motivated communication agent for real-world vision-dialog navigation[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal:IEEE, 2021. [58] ANDERSON P, WU Qi, TENEY D, et al. Vision-and-language navigation:interpreting visually-grounded navigation instructions in real environments[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:3674-3683. [59] NGUYEN K, DEY D, BROCKETT C, et al. Vision-based navigation with language-based assistance via imitation learning with indirect intervention[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA,USA:IEEE, 2019:12527-12537. [60] WANG Xin, HUANG Qiuyuan, CELIKYILMAZ A, et al. Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA,USA:IEEE, 2019:6629-6638. [61] KRISHNA R, ZHU Yuke, GROTH O, et al. Visual genome:connecting language and vision using crowdsourced dense image annotations[J]. International Journal of Computer Vision, 2017, 123(1):32-73. [62] DRUON R, YOSHIYASU Y, KANEZAKI A, et al. Visual object search by learning spatial context[J]. IEEE Robotics and Automation Letters, 2020, 5(2):1279-1286. [63] MOGHADDAM M K, WU Qi, ABBASNEJAD E, et al. Optimistic agent:accurate graph-based value estimation for more successful visual navigation[C]//Proceedings of 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI,USA:IEEE, 2021:3733-3742. [64] MÖLLER R, FURNARI A, BATTIATO S, et al. A survey on human-aware robot navigation[J]. Robotics and Autonomous Systems, 2021, 145:103837. [65] CHEN Changan, LIU Yuejiang, KREISS S, et al. Crowd-robot interaction:crowd-aware robot navigation with attention-based deep reinforcement learning[C]//Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal:IEEE, 2019:6015-6022. [66] GULDENRING R, GÖRNER M, HENDRICH N, et al. Learning local planners for human-aware navigation in indoor environments[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV,USA:IEEE, 2020:6053-6060. [67] BACHILLER P, RODRIGUEZ-CRIADO D, JORVEKAR R R, et al. A graph neural network to model disruption in human-aware robot navigation[J]. Multimedia Tools and Applications, 2022, 81(3):3277-3295. [68] DEVLIN S, GEORGESCU R, MOMENNEJAD I, et al. Navigation Turing test (NTT):learning to evaluate human-like navigation[C]//Proceedings of 2021 International Conference on Machine Learning.[S.l.]:PMLR, 2021:2644-2653. [69] 陈健瑞, 王景璟, 侯向往, 等. 挺进深蓝:从单体仿生到群体智能[J]. 电子学报, 2021, 49(12):2458-2467. CHEN Jianrui, WANG Jingjing, HOU Xiangwang, et al. Advance into ocean:from bionic monomer to swarm intelligence[J]. Acta Electronica Sinica, 2021, 49(12):2458-2467. [70] MARCHESINI E, FARINELLI A. Genetic deep reinforcement learning for mapless navigation[C]//Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems. Auckland:ACM, 2020:1919-1921. [71] 陈龙, 刘坤华, 周宝定, 等. 多智能体协同高精地图构建关键技术研究[J]. 测绘学报, 2021, 50(11):1447-1456. DOI:10.11947/j.AGCS.2021.20210259. CHEN Long, LIU Kunhua, ZHOU Baoding, et al. Key technologies of multi-agent collaborative high definition map construction[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(11):1447-1456. DOI:10.11947/j.AGCS.2021.20210259. [72] LIU Zuxin, CHEN Baiming, ZHOU Hongyi, et al. Mapper:multi-agent path planning with evolutionary reinforcement learning in mixed dynamic environments[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV,USA:IEEE, 2020:11748-11754. [73] TANG Weiming, LI Yangyang, DENG Chenlong, et al. Stability analysis of position datum for real-time GPS/BDS/INS positioning in a platform system with multiple moving devices[J]. Remote Sensing, 2021, 13(23):4764. [74] GUO Wenfei, SONG Weiwei, NIU Xiaoji, et al. Foundation and performance evaluation of real-time GNSS high-precision one-way timing system[J].GPS Solutions, 2019, 23(1):1-11. [75] 施闯, 张东, 宋伟, 等. 北斗广域高精度时间服务原型系统[J]. 测绘学报, 2020, 49(3):269-277. DOI:10.11947/j.AGCS.2020.20180534. SHI Chuang, ZHANG Dong, SONG Wei, et al. BeiDou wide-area precise timing prototype system[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):269-277. DOI:10.11947/j.AGCS.2020.20180534. [76] LI Qingbiao, GAMA F, RIBEIRO A, et al. Graph neural networks for decentralized multi-robot path planning[C]//Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV,USA:IEEE, 2020:11785-11792. [77] MAVROGIANNIS C, KNEPPER R A. Hamiltonian coordination primitives for decentralized multiagent navigation[J]. The International Journal of Robotics Research, 2021, 40(10-11):1234-1254. [78] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5):505-510. DOI:10.11947/j.AGCS.2016.20160127. [79] 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):893-898. DOI:10.11947/j.AGCS.2018.20180149. [80] STRAY B, LAMB A, KAUSHIK A, et al. Quantum sensing for gravity cartography[J]. Nature,2022, 602(7898):590-594. DOI:10.1038/s41586-021-04315-3. [81] 褚金奎, 张然, 王志文, 等. 仿生偏振光导航传感器研究进展[J]. 科学通报, 2016, 61(23):2568-2577. DOI:10.1360/N972015-01163. CHU Jinkui, ZHANG Ran, WANG Zhiwen,et al. Progress on bio-inspired polarized skylight navigation sensor[J].Chinese Science Bulletin, 2016, 61(23):2568-2577. DOI:10.1360/N972015-01163. [82] HAMBLING D. Cosmic rays used for Arctic GPS[J]. New Scientist, 2021, 252(3364):8. |
| [1] | Jianya GONG, Peng YUE, Longgang XIANG, Haoru WU, Kaixuan WANG, Ruixiang LIU, Baoxin TENG. The design and implementation of the open geospatial engine (OGE) [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 587-602. |
| [2] | Xiaohua TONG, Rong HUANG, Jiarui CAO, Chen LIU, Rong WANG, Yusheng XU, Zhen YE, Yanmin JIN, Shijie LIU, Sicong LIU, Yongjiu FENG, Huan XIE. Intelligent methods for 3D terrain reconstruction of the Moon and near-Earth planets: a review of current advances and future perspectives [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1917-1933. |
| [3] | Xiaogang NING, Hanchao ZHANG, Ruiqian ZHANG. Practical framework and methodology for high-performance intelligent invariant detection in remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1098-1112. |
| [4] | Qin YAN, Haiyan GU, Yi YANG, Haitao LI, Hengtong SHEN, Shiqi LIU. Research progress and trend of intelligent remote sensing large model [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(10): 1967-1980. |
| [5] | LI Shutao, WU Qiong, KANG Xudong. Hyperspectral remote sensing image intrinsic information decomposition: advances and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1059-1073. |
| [6] | ZHU Feng, LUO Kegan, CHEN Weijie, LIU Wanke, ZHANG Xiaohong. Hybrid SVM and HMM based navigation context awareness models for overwater and underwater mixed scene [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 738-747. |
| [7] | YANG Bisheng, CHEN Chi, DONG Zhen. 3D geospatial information extraction of urban objects for smart surveying and mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1476-1484. |
| [8] | LIU Yu, GUO Hao, LI Haifeng, DONG Weihua, PEI Tao. A note on GeoAI from the perspective of geographical laws [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1062-1069. |
| [9] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
| [10] | WANG Jiayao, WU Fang, YAN Haowen. Cartography:its past, present and future [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 829-842. |
| [11] | WANG Quan, YOU Shucheng. Research and application outlook of land satellite remote sensing monitoring system [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 534-543. |
| [12] | LI Deren, XU Xiaodi, SHAO Zhenfeng. On geospatial information science in the era of IoE [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 1-8. |
| [13] | SHEN Li, XU Zhu, LI Zhilin, LIU Wanzeng, CUI Bingliang. From geographic information service to geographic knowledge service: research issues and development roadmap [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1194-1202. |
| [14] | AI Tinghua. Some thoughts on deep learning enabling cartography [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. |
| [15] | ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, JI Song, YU Ying, LAI Guangling. Progress and challenges of geospatial artificial intelligence [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||