Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (6): 873-884.doi: 10.11947/j.AGCS.2022.20220106
• Academician Forum • Previous Articles Next Articles
GONG Jianya1,2, HUAN Linxi1, ZHENG Xianwei1
Received:2022-02-18
Revised:2022-04-17
Published:2022-07-02
Supported by:CLC Number:
GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884.
| [1] LAPUSCHKIN S, WÄLDCHEN S, BINDER A, et al. Unmasking clever hans predictors and assessing what machines really learn[J]. Nature Communications, 2019, 10(1):1096. [2] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [3] RIBEIRO M T, SINGH S, GUESTRIN C. "Why should I trust you?":explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. California:ACM, 2016:1135-1144. [4] GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[C]//Proceedings of the 7th International Conference on Learning Representations. New Orleans:ICLR, 2019. [5] NGUYEN A, YOSINSKI J, CLUNE J. Understanding neural networks via feature visualization:a survey[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:55-76. [6] ERHAN D, BENGIO Y, COURVILLE A, et al. Visualizing higher-layer features of a deep network[R]. University of Montreal, 2009. [7] NGUYEN A, YOSINSKI J, CLUNE J. Deep neural networks are easily fooled:high confidence predictions for unrecognizable images[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:427-436. [8] SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks:Visualising image classification models and saliency maps[C]//Proceedings of the 2nd International Conference on Learning Representations. Banff:ICLR, 2014. [9] MAHENDRAN A, VEDALDI A. Visualizing deep convolutional neural networks using natural pre-images[J]. International Journal of Computer Vision, 2016, 120(3):233-255. [10] Inceptionism:going deeper into neural networks[EB/OL].[2022-04-17]. Google Research Blog. 2015. https://news.ycombinator.com/item?id=9736598. [11] NGUYEN A, DOSOVITSKIY A, YOSINSKI J, et al. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona:Curran Associates Inc., 2016:3395-3403. [12] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE, 2009:248-255. [13] ZHANG Quanshi, CAO Ruiming, SHI Feng, et al. Interpreting CNN knowledge via an explanatory graph[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans:AAAI Press, 2018:546. [14] ZHANG Quanshi, YANG Yu, MA Haotian, et al. Interpreting CNNs via decision trees[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019:6254-6263. [15] LIU Xuan, WANG Xiaoguang, MATWIN S. Improving the interpretability of deep neural networks with knowledge distillation[C]//Proceedings of 2018 IEEE International Conference on Data Mining Workshops (ICDMW). Singapore:IEEE, 2018:905-912. [16] CHEN Runjin, CHEN Hao, HUANG Ge, et al. Explaining neural networks semantically and quantitatively[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul:IEEE, 2019:9186-9195. [17] ANCONA M, CEOLINI E, ÖZTIRELI C, et al. Towards better understanding of gradient-based attribution methods for deep neural networks[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver:ICLR, 2018. [18] MONTAVON G, LAPUSCHKIN S, BINDER A, et al. Explaining nonlinear classification decisions with deep taylor decomposition[J]. Pattern Recognition, 2017, 65:211-222. [19] SUNDARARAJAN M, TALY A, YAN Qiqi. Axiomatic attribution for deep networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney:JMLR.org, 2017:3319-3328. [20] ANCONA M, CEOLINI E, ÖZTIRELI C, et al. Gradient-based attribution methods[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:169-191. [21] KINDERMANS P J, HOOKER S, ADEBAYO J, et al. The (Un) reliability of saliency methods[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:267-280. [22] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich:Springer, 2014:818-833. [23] ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona:IEEE, 2011:2018-2025. [24] SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity:The all convolutional net[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego:ICLR, 2015. [25] ZHANG Jianming, BARGAL S A, LIN Zhe, et al. Top-down neural attention by excitation backprop[J]. International Journal of Computer Vision, 2018, 126(10):1084-1102. [26] MONTAVON G, BINDER A, LAPUSCHKIN S, et al. Layer-wise relevance propagation:an overview[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:193-209. [27] SHRIKUMAR A, GREENSIDE P, KUNDAJE A. Learning important features through propagating activation differences[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney:JMLR.org, 2017:3145-3153. [28] BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. PLoS One, 2015, 10(7):e0130140.() [29] ROBNIK-ŠIKONJA M, KONONENKO I. Explaining classifications for individual instances[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5):589-600. [30] ZINTGRAF L M, COHEN T S, ADEL T, et al. Visualizing deep neural network decisions:Prediction difference analysis[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon:ICLR, 2017. [31] FONG R C, VEDALDI A. Interpretable explanations of black boxes by meaningful perturbation[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:3449-3457. [32] DABKOWSKI P, GAL Y. Real time image saliency for black box classifiers[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach:Curran Associates Inc., 2017:6970-6979. [33] FONG R, PATRICK M, VEDALDI A. Understanding deep networks via extremal perturbations and smooth masks[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul:IEEE, 2019:2950-2958. [34] PETSIUK V, DAS A, SAENKO K. Rise:randomized input sampling for explanation of black-box models[C]//Proceedings of British Machine Vision Conference 2018. Newcastle:BMVA Press, 2018:151. [35] SINGH K K, LEE Y J. Hide-and-seek:forcing a network to be meticulous for weakly-supervised object and action localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:3544-3553. [36] WANG Xiaolong, SHRIVASTAVA A, GUPTA A. A-fast-RCNN:hard positive generation via adversary for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:3039-3048. [37] WEI Yunchao, FENG Jiashi, LIANG Xiaodan, et al. Object region mining with adversarial erasing:a simple classification to semantic segmentation approach[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:6488-6496. [38] ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:2921-2929. [39] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:618-626. [40] CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++:generalized gradient-based visual explanations for deep convolutional networks[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe:IEEE, 2018:839-847. [41] SATTARZADEH S, SUDHAKAR M, PLATANIOTIS K N, et al. Integrated Grad-CAM:sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring[C]//Proceedings of ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto:IEEE, 2021:1775-1779. [42] WANG Haofan, WANG Zifan, DU Mengnan, et al. Score-CAM:score-weighted visual explanations for convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle:IEEE, 2020:111-119. [43] DESAI S, RAMASWAMY H G. Ablation-CAM:visual explanations for deep convolutional network via gradient-free localization[C]//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass:IEEE, 2020:972-980. [44] AAMODT A, PLAZA E. Case-based reasoning:foundational issues, methodological variations, and system approaches[J]. AI Communications, 1994, 7(1):39-59. [45] KUNCHEVA L I, BEZDEK J C. Nearest prototype classification:clustering, genetic algorithms, or random search?[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 1998, 28(1):160-164. [46] BIEN J, TIBSHIRANI R. Prototype selection for interpretable classification[J]. The Annals of Applied Statistics, 2011, 5(4):2403-2424. [47] KIM B, RUDIN C, SHAH J. The bayesian case model:a generative approach for case-based reasoning and prototype classification[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal:MIT Press, 2014:1952-1960. [48] KIM B, KHANNA R, KOYEJO O. Examples are not enough, learn to criticize! criticism for interpretability[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona:Curran Associates Inc., 2016:2288-2296. [49] LI O, LIU Hao, CHEN Chaofan, et al. Deep learning for case-based reasoning through prototypes:a neural network that explains its predictions[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans:AAAI, 2018:3530-3537. [50] COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1):15-18. [51] KOH P W, LIANG P. Understanding black-box predictions via influence functions[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney:JMLR.org, 2017:1885-1894. [52] KOH P W, ANG K S, TEO H H K, et al. On the accuracy of influence functions for measuring group effects[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc., 2019:5254-5264. [53] YUAN Xiaoyong, HE Pan, ZHU Qile, et al. Adversarial examples:attacks and defenses for deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9):2805-2824. [54] VAN LOOVEREN A, KLAISE J. Interpretable counterfactual explanations guided by prototypes[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Bilbao:Springer, 2021:650-665. [55] GOYAL Y, WU Ziyan, ERNST J, et al. Counterfactual visual explanations[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach:ICML, 2019:2376-2384. [56] BAU D, ZHOU Bolei, KHOSLA A, et al. Network dissection:quantifying interpretability of deep visual representations[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:3319-3327. [57] HOOKER S, ERHAN D, KINDERMANS P J, et al. A benchmark for interpretability methods in deep neural networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver:Curran Associates Inc., 2019:9737-9748. [58] MONTAVON G. Gradient-based vs. propagation-based explanations:an axiomatic comparison[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:253-265. [59] LAPUSCHKIN S, BINDER A, MONTAVON G, et al. The LRP toolbox for artificial neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1):3938-3942. [60] ALBER M, LAPUSCHKIN S, SEEGERER P, et al. iNNvestigate neural networks![J]. Journal of Machine Learning Research, 2019:1-8. [61] MEUDEC R. tf-explain[EB/OL].[2022-04-01]. https://pypi.org/project/tf-explain/. [62] PASZKE A, GROSS S, MASSA F, et al. PyTorch:an imperative style, high-performance deep learning library[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver:Curran Associates Inc., 2019:8026-8037. [63] 李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学:地球科学, 2012, 42(6):805-813. LI Deren, TONG Qingxi, LI Rongxing, et al. Current issues in high-resolution earth observation technology[J]. Scientia Sinica Tertae, 2012, 42(6):805-813. [64] 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12):1788-1796. GONG Jianya. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1788-1796. [65] 龚健雅, 许越, 胡翔云, 等. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8):1013-1022. DOI:10.11947/j.AGCS.2021.20210085. GONG Jianya, XU Yue, HU Xiangyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1013-1022. DOI:10.11947/j.AGCS.2021.20210085. [66] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778. [67] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. California:ACM, 2010:270-279. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Jixian ZHANG, Haiyan GU, Huan NI, Haitao LI, Yi YANG, Shaopeng DING, Songman SUI. Deep learning methods for remote sensing intelligent change detection: evolution and development [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1347-1370. |
| [3] | Shuai FANG, Jiaen LIU, Jing ZHANG. Spatio-temporal fusion algorithm based on adaptive reference feature incorporation and multi-scale feature aggregation [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1476-1488. |
| [4] | Nina MENG, Fengmei LI, Xiaodong ZHOU. Data and cognition dual-driven building group generalization results and scale consistency assessment [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1318-1331. |
| [5] | Yaqing WANG, Zhonghui WANG. River network automated selection method based on heterogeneous graph convolutional networks [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1332-1345. |
| [6] | Xiaoya AN, Weiru GUO, Pengxin ZHANG, Xinxin LI, Lei SHI. Ship trajectories clustering method considering similarity in geometric position and mobility features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1107-1121. |
| [7] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [8] | Qingli LUO, Xueyan LI, Guoman HUANG, Honghui CHEN, Minglong XUE, Jian LI. AOSN: alpha optimal structure network for height estimation from a single SAR image in mountain areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 888-898. |
| [9] | Wei TU, Xiangyuan CHI, Tianhong ZHAO, Jian YANG, Shiping ZHU, Deli CHEN. Multi-view spatio-temporal graph convolutional networks model for urban drainage networks flow prediction [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 334-344. |
| [10] | Xiaohua TONG, Rong HUANG, Jiarui CAO, Chen LIU, Rong WANG, Yusheng XU, Zhen YE, Yanmin JIN, Shijie LIU, Sicong LIU, Yongjiu FENG, Huan XIE. Intelligent methods for 3D terrain reconstruction of the Moon and near-Earth planets: a review of current advances and future perspectives [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1917-1933. |
| [11] | Zhili ZHANG, Huiwei JIANG, Xiangyun HU. A minimal-interaction framework for accurate and batch extraction of geospatial objects from remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1863-1876. |
| [12] | Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103. |
| [13] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
| [14] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [15] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||