Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (6): 873-884.doi: 10.11947/j.AGCS.2022.20220106
• Academician Forum • Previous Articles Next Articles
GONG Jianya1,2, HUAN Linxi1, ZHENG Xianwei1
Received:
2022-02-18
Revised:
2022-04-17
Published:
2022-07-02
Supported by:
CLC Number:
GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884.
[1] LAPUSCHKIN S, WÄLDCHEN S, BINDER A, et al. Unmasking clever hans predictors and assessing what machines really learn[J]. Nature Communications, 2019, 10(1):1096. [2] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [3] RIBEIRO M T, SINGH S, GUESTRIN C. "Why should I trust you?":explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. California:ACM, 2016:1135-1144. [4] GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[C]//Proceedings of the 7th International Conference on Learning Representations. New Orleans:ICLR, 2019. [5] NGUYEN A, YOSINSKI J, CLUNE J. Understanding neural networks via feature visualization:a survey[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:55-76. [6] ERHAN D, BENGIO Y, COURVILLE A, et al. Visualizing higher-layer features of a deep network[R]. University of Montreal, 2009. [7] NGUYEN A, YOSINSKI J, CLUNE J. Deep neural networks are easily fooled:high confidence predictions for unrecognizable images[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:427-436. [8] SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks:Visualising image classification models and saliency maps[C]//Proceedings of the 2nd International Conference on Learning Representations. Banff:ICLR, 2014. [9] MAHENDRAN A, VEDALDI A. Visualizing deep convolutional neural networks using natural pre-images[J]. International Journal of Computer Vision, 2016, 120(3):233-255. [10] Inceptionism:going deeper into neural networks[EB/OL].[2022-04-17]. Google Research Blog. 2015. https://news.ycombinator.com/item?id=9736598. [11] NGUYEN A, DOSOVITSKIY A, YOSINSKI J, et al. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona:Curran Associates Inc., 2016:3395-3403. [12] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE, 2009:248-255. [13] ZHANG Quanshi, CAO Ruiming, SHI Feng, et al. Interpreting CNN knowledge via an explanatory graph[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. New Orleans:AAAI Press, 2018:546. [14] ZHANG Quanshi, YANG Yu, MA Haotian, et al. Interpreting CNNs via decision trees[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019:6254-6263. [15] LIU Xuan, WANG Xiaoguang, MATWIN S. Improving the interpretability of deep neural networks with knowledge distillation[C]//Proceedings of 2018 IEEE International Conference on Data Mining Workshops (ICDMW). Singapore:IEEE, 2018:905-912. [16] CHEN Runjin, CHEN Hao, HUANG Ge, et al. Explaining neural networks semantically and quantitatively[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul:IEEE, 2019:9186-9195. [17] ANCONA M, CEOLINI E, ÖZTIRELI C, et al. Towards better understanding of gradient-based attribution methods for deep neural networks[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver:ICLR, 2018. [18] MONTAVON G, LAPUSCHKIN S, BINDER A, et al. Explaining nonlinear classification decisions with deep taylor decomposition[J]. Pattern Recognition, 2017, 65:211-222. [19] SUNDARARAJAN M, TALY A, YAN Qiqi. Axiomatic attribution for deep networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney:JMLR.org, 2017:3319-3328. [20] ANCONA M, CEOLINI E, ÖZTIRELI C, et al. Gradient-based attribution methods[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:169-191. [21] KINDERMANS P J, HOOKER S, ADEBAYO J, et al. The (Un) reliability of saliency methods[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:267-280. [22] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich:Springer, 2014:818-833. [23] ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona:IEEE, 2011:2018-2025. [24] SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity:The all convolutional net[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego:ICLR, 2015. [25] ZHANG Jianming, BARGAL S A, LIN Zhe, et al. Top-down neural attention by excitation backprop[J]. International Journal of Computer Vision, 2018, 126(10):1084-1102. [26] MONTAVON G, BINDER A, LAPUSCHKIN S, et al. Layer-wise relevance propagation:an overview[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:193-209. [27] SHRIKUMAR A, GREENSIDE P, KUNDAJE A. Learning important features through propagating activation differences[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney:JMLR.org, 2017:3145-3153. [28] BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. PLoS One, 2015, 10(7):e0130140.() [29] ROBNIK-ŠIKONJA M, KONONENKO I. Explaining classifications for individual instances[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(5):589-600. [30] ZINTGRAF L M, COHEN T S, ADEL T, et al. Visualizing deep neural network decisions:Prediction difference analysis[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon:ICLR, 2017. [31] FONG R C, VEDALDI A. Interpretable explanations of black boxes by meaningful perturbation[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:3449-3457. [32] DABKOWSKI P, GAL Y. Real time image saliency for black box classifiers[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach:Curran Associates Inc., 2017:6970-6979. [33] FONG R, PATRICK M, VEDALDI A. Understanding deep networks via extremal perturbations and smooth masks[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul:IEEE, 2019:2950-2958. [34] PETSIUK V, DAS A, SAENKO K. Rise:randomized input sampling for explanation of black-box models[C]//Proceedings of British Machine Vision Conference 2018. Newcastle:BMVA Press, 2018:151. [35] SINGH K K, LEE Y J. Hide-and-seek:forcing a network to be meticulous for weakly-supervised object and action localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:3544-3553. [36] WANG Xiaolong, SHRIVASTAVA A, GUPTA A. A-fast-RCNN:hard positive generation via adversary for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:3039-3048. [37] WEI Yunchao, FENG Jiashi, LIANG Xiaodan, et al. Object region mining with adversarial erasing:a simple classification to semantic segmentation approach[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:6488-6496. [38] ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:2921-2929. [39] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice:IEEE, 2017:618-626. [40] CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++:generalized gradient-based visual explanations for deep convolutional networks[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe:IEEE, 2018:839-847. [41] SATTARZADEH S, SUDHAKAR M, PLATANIOTIS K N, et al. Integrated Grad-CAM:sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring[C]//Proceedings of ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto:IEEE, 2021:1775-1779. [42] WANG Haofan, WANG Zifan, DU Mengnan, et al. Score-CAM:score-weighted visual explanations for convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle:IEEE, 2020:111-119. [43] DESAI S, RAMASWAMY H G. Ablation-CAM:visual explanations for deep convolutional network via gradient-free localization[C]//Proceedings of 2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass:IEEE, 2020:972-980. [44] AAMODT A, PLAZA E. Case-based reasoning:foundational issues, methodological variations, and system approaches[J]. AI Communications, 1994, 7(1):39-59. [45] KUNCHEVA L I, BEZDEK J C. Nearest prototype classification:clustering, genetic algorithms, or random search?[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 1998, 28(1):160-164. [46] BIEN J, TIBSHIRANI R. Prototype selection for interpretable classification[J]. The Annals of Applied Statistics, 2011, 5(4):2403-2424. [47] KIM B, RUDIN C, SHAH J. The bayesian case model:a generative approach for case-based reasoning and prototype classification[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal:MIT Press, 2014:1952-1960. [48] KIM B, KHANNA R, KOYEJO O. Examples are not enough, learn to criticize! criticism for interpretability[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona:Curran Associates Inc., 2016:2288-2296. [49] LI O, LIU Hao, CHEN Chaofan, et al. Deep learning for case-based reasoning through prototypes:a neural network that explains its predictions[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans:AAAI, 2018:3530-3537. [50] COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1):15-18. [51] KOH P W, LIANG P. Understanding black-box predictions via influence functions[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney:JMLR.org, 2017:1885-1894. [52] KOH P W, ANG K S, TEO H H K, et al. On the accuracy of influence functions for measuring group effects[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc., 2019:5254-5264. [53] YUAN Xiaoyong, HE Pan, ZHU Qile, et al. Adversarial examples:attacks and defenses for deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9):2805-2824. [54] VAN LOOVEREN A, KLAISE J. Interpretable counterfactual explanations guided by prototypes[C]//Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Bilbao:Springer, 2021:650-665. [55] GOYAL Y, WU Ziyan, ERNST J, et al. Counterfactual visual explanations[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach:ICML, 2019:2376-2384. [56] BAU D, ZHOU Bolei, KHOSLA A, et al. Network dissection:quantifying interpretability of deep visual representations[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:3319-3327. [57] HOOKER S, ERHAN D, KINDERMANS P J, et al. A benchmark for interpretability methods in deep neural networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver:Curran Associates Inc., 2019:9737-9748. [58] MONTAVON G. Gradient-based vs. propagation-based explanations:an axiomatic comparison[M]//SAMEK W, MONTAVON G, VEDALDI A, et al. Explainable AI:Interpreting, Explaining and Visualizing Deep Learning. Cham:Springer, 2019:253-265. [59] LAPUSCHKIN S, BINDER A, MONTAVON G, et al. The LRP toolbox for artificial neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1):3938-3942. [60] ALBER M, LAPUSCHKIN S, SEEGERER P, et al. iNNvestigate neural networks![J]. Journal of Machine Learning Research, 2019:1-8. [61] MEUDEC R. tf-explain[EB/OL].[2022-04-01]. https://pypi.org/project/tf-explain/. [62] PASZKE A, GROSS S, MASSA F, et al. PyTorch:an imperative style, high-performance deep learning library[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver:Curran Associates Inc., 2019:8026-8037. [63] 李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题[J]. 中国科学:地球科学, 2012, 42(6):805-813. LI Deren, TONG Qingxi, LI Rongxing, et al. Current issues in high-resolution earth observation technology[J]. Scientia Sinica Tertae, 2012, 42(6):805-813. [64] 龚健雅. 人工智能时代测绘遥感技术的发展机遇与挑战[J]. 武汉大学学报(信息科学版), 2018, 43(12):1788-1796. GONG Jianya. Chances and challenges for development of surveying and remote sensing in the age of artificial intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1788-1796. [65] 龚健雅, 许越, 胡翔云, 等. 遥感影像智能解译样本库现状与研究[J]. 测绘学报, 2021, 50(8):1013-1022. DOI:10.11947/j.AGCS.2021.20210085. GONG Jianya, XU Yue, HU Xiangyun, et al. Status analysis and research of sample database for intelligent interpretation of remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8):1013-1022. DOI:10.11947/j.AGCS.2021.20210085. [66] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:770-778. [67] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. California:ACM, 2010:270-279. |
[1] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[2] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[3] | YANG Bisheng, CHEN Chi, DONG Zhen. 3D geospatial information extraction of urban objects for smart surveying and mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1476-1484. |
[4] | LI Zhenhong, ZHU Wu, YU Chen, ZHANG Qin, ZHNAG Chenglong, LIU Zhenjiang, ZHANG Xuesong, CHEN Bo, DU Jiantao, SONG Chuang, HAN Bingquan, ZHOU Jiawei. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. |
[5] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[6] | LIU Jingnan, LUO Yarong, GUO Chi, GAO Kefu. PNT intelligence and intelligent PNT [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828. |
[7] | WANG Jiayao, WU Fang, YAN Haowen. Cartography:its past, present and future [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 829-842. |
[8] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[9] | LIU Yu, GUO Hao, LI Haifeng, DONG Weihua, PEI Tao. A note on GeoAI from the perspective of geographical laws [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1062-1069. |
[10] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[11] | WANG Quan, YOU Shucheng. Research and application outlook of land satellite remote sensing monitoring system [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 534-543. |
[12] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[13] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[14] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[15] | LI Deren, XU Xiaodi, SHAO Zhenfeng. On geospatial information science in the era of IoE [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||