Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (6): 885-896.doi: 10.11947/j.AGCS.2022.20220132
• Geodesy and Navigation • Previous Articles Next Articles
ZHANG Qin1,2, ZHAO Chaoying1,2, CHEN Xuerong1
Received:
2022-02-25
Revised:
2022-04-21
Published:
2022-07-02
Supported by:
CLC Number:
ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896.
[1] 李铁锋. 灾害地质学[M]. 北京:北京大学出版社, 2002. LI Tiefeng. Disaster Geology[M]. Beijing. Peking University Press, 2002. [2] ROWAN A V, EGHOLM D L, QUINCEY D J, et al. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya[J]. Earth and Planetary Science Letters, 2015, 430:427-438. [3] BRABB E E. The world landslide problem[J]. Episodes, 1991, 14(1):52-61. [4] KÄÄB A, LEINSS S, GILBERT A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018, 11(2):114-120. [5] QUINCEY D J, BRAUN M, GLASSER N F, et al. Karakoram glacier surge dynamics[J]. Geophysical Research Letters, 2011, 38(18):L18504. [6] HU Kaiheng, ZHANG Xiaopeng, YOU Yong, et al. Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge[J]. Landslides, 2019, 16(5):993-1001. [7] 张永军, 张祖勋, 龚健雅. 天空地多源遥感数据的广义摄影测量学[J]. 测绘学报, 2021, 50(1):1-11. DOI:10.11947/j.AGCS.2021.20200245. ZHANG Yongjun, ZHANG Zuxun, GONG Jianya. Generalized photogrammetry of spaceborne, airborne and terrestrial multi-soruce remote sensing dataset[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1):1-11. DOI:10.11947/j.AGCS.2021.20200245. [8] 许强, 陆会燕, 李为乐, 等. 滑坡隐患类型与对应识别方法[J]. 武汉大学学报(信息科学版), 2022, 47(3):377-387. XU Qiang, LU Huiyan, LI Weile et al. Types of potential landslide and corresponding identification technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3):377-387. [9] 王治华. 滑坡遥感[M]. 北京:科学出版社, 2012. WANG Zhihua. Remote sensing for landslide[M]. Beijing:Science Press, 2012. [10] CRUDEN D M, VARNES D J. Landslide types and processes[J]. Special Report-National Research Council, Transportation Research Board, 1996, 247:36-75. [11] FIORUCCI F, GIORDAN D, SANTANGELO M, et al. Criteria for the optimal selection of remote sensing optical images to map event landslides[J]. Natural Hazards and Earth System Sciences, 2018, 18(1):405-417. [12] 王治华. 数字滑坡技术及其在天台乡滑坡调查中的应用[J]. 岩土工程学报, 2006, 28(4):516-520. WANG Zhihua. Digital landslide technology and its application in investigation of Tiantai Town landslide[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4):516-520. [13] 许冲, 戴福初, 陈剑, et al. 汶川Ms8.0地震重灾区次生地质灾害遥感精细解译[J]. 遥感学报, 2009, 13(4):754-762. XU Chong, DAI Fuchu, CHEN Jian, et al.. Remote sensing interpretation of secondary geological Hazards in Wenchuan Ms8.0 earthquake[J]. Journal of Remote Sensing, 2009, 13(4):754-762. [14] HE Jianan, SUN Mingwei, CHEN Qi, et al. An improved approach for generating globally consistent seamline networks for aerial image mosaicking[J]. International Journal of Remote Sensing, 2019, 40(3):859-882. [15] 何佳男. 贴近摄影测量及其关键技术研究[D]. 武汉:武汉大学, 2019. HE Jianan. Nap-of-the-object photogrammetry and its key techniques[D]. Wuhan:Wuhan University, 2019. [16] LI Zhongbin, SHI Wenzhong, LU Ping, et al. Landslide mapping from aerial photographs using change detection-based Markov random field[J]. Remote Sensing of Environment, 2016, 187:76-90. [17] KYRIOU A, NIKOLAKOPOULOS K. Landslide mapping using optical and radar data:a case study from Aminteo, Western Macedonia Greece[J]. European Journal of Remote Sensing, 2020, 53(S2):17-27. [18] QU Feihang, QIU Haijun, SUN Hesheng, et al. Post-failure landslide change detection and analysis using optical satellite Sentinel-2 images[J]. Landslides, 2021, 18(1):447-455. [19] HUANG Qingqing, WANG Chengyi, MENG Yu, et al. Landslide monitoring using change detection in multitemporal optical imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2):312-316. [20] LEPRINCE S, BARBOT S, AYOUB F, et al. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6):1529-1558. [21] ROSU A M, PIERROT-DESEILLIGNY M, DELORME A, et al. Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100:48-59. [22] DILLE A, KERVYN F, HANDWERGER A L, et al. When image correlation is needed:Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series[J]. Remote Sensing of Environment, 2021, 258:112402. DOI:10.1016/j.rse.2021.112402. [23] SCHERLER D, LEPRINCE S, STRECKER M R. Glacier-surface velocities in alpine terrain from optical satellite imagery-Accuracy improvement and quality assessment[J]. Remote Sensing of Environment, 2008, 112(10):3806-3819. [24] HILLEY G E, BVRGMANN R, FERRETTI A, et al. Dynamics of slow-moving landslides from permanent scatterer analysis[J]. Science, 2004, 304(5679):1952-1955. [25] STEPHENSON O L, KÖHNE T, ZHAN E, et al. Deep learning-based damage mapping with InSAR coherence time series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-17. [26] SHIBAYAMA T, YAMAGUCHI Y, YAMADA H. Polarimetric scattering properties of landslides in forested areas and the dependence on the local incidence angle[J]. Remote Sensing, 2015, 7(11):15424-15442. [27] ZHAO Chaoying, LU Zhong, ZHANG Qin, et al. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124:348-359. [28] LU Ping, CASAGLI N, CATANI F, et al. Persistent scatterers interferometry hotspot and cluster analysis (PSI-HCA) for detection of extremely slow-moving landslides[J]. International Journal of Remote Sensing, 2012, 33(2):466-489. [29] LIU Xiaojie, ZHAO Chaoying, ZHANG Qin, et al. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China[J]. Engineering Geology, 2021, 284:106033. DOI:10.1016/j.enggeo.2021.106033. [30] WANG Chao, TANG Yixian, ZHANG Hong, et al. First mapping of China surface movement using supercomputing interferometric SAR technique[J]. Science Bulletin, 2021, 66(16):1608-1610. [31] LANARI R, BONANO M, CASU F, et al. Automatic generation of sentinel-1 continental scale DInSAR deformation time series through an extended P-SBAS processing pipeline in a cloud computing environment[J]. Remote Sensing, 2020, 12(18):2961. [32] COSTANTINI M, FERRETTI A, MINATI F, et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data[J]. Remote Sensing of Environment, 2017, 202:250-275. [33] GUZZETTI F, MONDINI A C, CARDINALI M, et al. Landslide inventory maps:new tools for an old problem[J]. Earth-Science Reviews, 2012, 112(1-2):42-66. [34] SINGLETON A, LI Z, HOEY T, et al. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain[J]. Remote Sensing of Environment, 2014, 147:133-144. [35] LIU X, ZHAO C, ZHANG Q, et al. Deformation of the baige landslide, Tibet, China, revealed through the integration of cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 SAR observations[J]. Geophysical Research Letters, 2020, 47(3):e2019GL086142. [36] HANDWERGER A L, JONES S Y, HUANG M-H, et al. Rapid landslide identification using synthetic aperture radar amplitude change detection on the Google Earth Engine[J]. Natural Hazards Earth System Sciences Discussions, 2020, 315, 1-24. [37] ESPOSITO G, MARCHESINI I, MONDINI A C, et al. A spaceborne SAR-based procedure to support the detection of landslides[J]. Natural Hazards and Earth System Sciences, 2020, 20(9):2379-2395. [38] NIU Chaoyang, ZHANG Haobo, LIU Wei, et al. Using a fully polarimetric SAR to detect landslide in complex surroundings:case study of 2015 Shenzhen landslide[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174:56-67. [39] LIN S Y, LIN Chengwei, VAN GASSELT S. Processing framework for landslide detection based on synthetic aperture radar (SAR) intensity-image analysis[J]. Remote Sensing, 2021, 13(4):644. [40] SANTANGELO M, CARDINALI M, BUCCI F, et al. Exploring event landslide mapping using Sentinel-1 SAR backscatter products[J]. Geomorphology, 2022, 397:108021. [41] WAN Jie, WANG Changcheng, SHEN Peng, et al. Forest height and underlying topography inversion using polarimetric SAR tomography based on SKP decomposition and maximum likelihood estimation[J]. Forests, 2021, 12(4):444. [42] 周建民, 李震, 邢强. 基于雷达干涉失相干特性提取冰川边界方法研究[J]. 冰川冻土, 2010, 32(1):133-138. ZHOU Jianmin, LI Zhen, XING Qiang. Deriving glacier border information based on analysis of decorrelation in SAR interferometry[J]. Journal of Glaciology and Geocryology, 2010, 32(1):133-138. [43] FOURNIER T J, PRITCHARD M E, RIDDICK S N. Duration, magnitude, and frequency of subaerial volcano deformation events:new results from Latin America using InSAR and a global synthesis[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1):Q01003. [44] BELL R E, STUDINGER M, SHUMAN C A, et al. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams[J]. Nature, 2007, 445(7130):904-907. [45] MOHR J J, REEH N, MADSEN S N.Three-dimensional glacial flow and surface elevation measured with radar interferometry[J]. Nature, 1998, 391:6664. [46] LI Jia, LI Zhiwei, WU Lixin, et al. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake:use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique[J]. Journal of Hydrology, 2018, 559:596-608. [47] ERTEN E. Glacier velocity estimation by means of a polarimetric similarity measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6):3319-3327. [48] TONG Xiaohua, YE Zhen, XU Yusheng, et al. A novel subpixel phase correlation method using singular value decomposition and unified random sample consensus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4143-4156. [49] HU Xie, WANG Teng, LIAO Mingsheng. Measuring coseismic displacements with point-like targets offset tracking[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):283-287. [50] ZHAO Chaoying, LU Zhong, ZHANG Qin, et al. Mining collapse monitoring with SAR imagery data:a case study of Datong mine, China[J]. Journal of Applied Remote Sensing, 2014, 8(1):083574. [51] 彭建兵, 范文, 李喜安, 等. 汾渭盆地地裂缝成因研究中的若干关键问题[J]. 工程地质学报, 2007, 15(4):433-440. PENG Jianbing, FAN Wen, LI Xian, et al. Some key questions in the formation of ground fissures in the Fen-Wei Basin[J]. Journal of Engineering Geology, 2007, 15(4):433-440. [52] 赵超英, 张勤, 丁晓利, 等. 利用InSAR技术定位西安活动地裂缝[J]. 武汉大学学报(信息科学版), 2009, 34(7):809-813. ZHAO Chaoying, ZHANG Qin, DING Xiaoli, et al. Positioning of Xi'an active ground fissures with SAR interferometry[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7):809-813. [53] YANG Chengsheng, LU Zhong, ZHANG Qin, et al. Deformation at Longyao ground fissure and its surroundings, North China plain, revealed by ALOS PALSAR PS-InSAR[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 67:1-9. [54] ABDULWAHID W M, PRADHAN B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR)[J]. Landslides, 2017, 14(3):1057-1076. [55] PALENZUELA J A, MARSELLA M, NARDINOCCHI C, et al. Landslide detection and inventory by integrating LiDAR data in a GIS environment[J]. Landslides, 2015, 12(6):1035-1050. [56] EKER R, AYDIN A, HVBL J. Unmanned aerial vehicle (UAV)-based monitoring of a landslide:Gallenzerkogel landslide (Ybbs-Lower Austria) case study[J]. Environmental Monitoring and Assessment, 2017, 190(1):1-14. [57] MORA O, LENZANO M, TOTH C, et al. Landslide change detection based on multi-temporal airborne LiDAR-derived DEMs[J]. Geosciences, 2018, 8(1):23. [58] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10):1509-1516. DOI:1011947/j.AGCS.2017.20170351. YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1509-1516. DOI:1011947/j.AGCS.2017.20170351. [59] ZHANG Fan, HU Zhenqi, FU Yaokun, et al. A new identification method for surface cracks from UAV images based on machine learning in coal mining areas[J]. Remote Sensing, 2020, 12(10):1571. [60] 熊艳, 高仁强, 徐战亚. 机载LiDAR点云数据降维与分类的随机森林方法[J]. 测绘学报, 2018, 47(4):508-518. DOI:10.11947/J.AGCS.2017.20170417. XIONG Yan, GAO Renqiang, XU Zhanya. Random forest method for dimension reduction and point cloud classification based on airborne LiDAR[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4):508-518. DOI:10.11947/J.AGCS.2017.20170417. [61] MAXWELL A E, WARNER T A, STRAGER M P, et al. Combining RapidEye satellite imagery and lidar for mapping of mining and mine reclamation[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(2):179-189. DOI:10.11947/J.AGCS.2017.20170417. [62] STUMPF A, KERLE N. Object-oriented mapping of landslides using random forests[J]. Remote Sensing of Environment, 2011, 115(10):2564-2577. [63] STUMPF A, LACHICHE N, MALET J P, et al. Active learning in the spatial domain for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2492-2507. [64] CHEN Tao, TRINDER J, NIU Ruiqing. Object-oriented landslide mapping using ZY-3 satellite imagery, random forest and mathematical morphology, for the three-gorges reservoir, China[J]. Remote Sensing, 2017, 9(4):333. [65] SIMON PLANK. DANIEL HÖLBLING C E, BARBARA FRIEDL, SANDRO MARTINIS, ANDRO TWELE. Comparing object-based landslide detection methods based on polarimetric SAR and optical satellite imagery-a case study in Taiwan[C]//Proceedings of the 7th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry. Frascati, Italy:[s.n.], 2015. [66] CASAGLI N, CIGNA F, BIANCHINI S, et al. Landslide mapping and monitoring by using radar and optical remote sensing:examples from the EC-FP7 project SAFER[J]. Remote Sensing Applications:Society and Environment, 2016, 4:92-108. [67] ZHENG Xiangxiang, HE Guojin, WANG Shanshan, et al. Comparison of machine learning methods for potential active landslide hazards identification with multi-source data[J]. ISPRS International Journal of Geo-Information, 2021, 10(4):253. [68] GHORBANZADEH O, BLASCHKE T, GHOLAMNIA K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing, 2019, 11(2):196. [69] JI Shunping, YU Dawen, SHEN Chaoyong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352. [70] SHI Wenzhong, ZHANG Min, KE Hongfei, et al. Landslide recognition by deep convolutional neural network and change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6):4654-4672. [71] ANANTRASIRICHAI N, BIGGS J, KELEVITZ K, et al. Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4):2940-2950. |
[1] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[2] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[3] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[4] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[5] | LI Rongxing, LI Guojun, FENG Tiantian, SHEN Qiang, QIAO Gang, YE Zhen, XIA Menglian. A review of Antarctic ice velocity products and methods based on optical remote sensing satellite images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 953-963. |
[6] | SHAN Jie, TIAN Xiangxi, LI Shuang, LI Renfei. Advances of spaceborne laser altimetry technology [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 964-982. |
[7] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[8] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[9] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[10] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[11] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[12] | ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, JI Song, YU Ying, LAI Guangling. Progress and challenges of geospatial artificial intelligence [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146. |
[13] | AI Tinghua. Some thoughts on deep learning enabling cartography [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. |
[14] | GONG Jianya, XU Yue, HU Xiangyun, JIANG Liangcun, ZHANG Mi. Status analysis and research of sample database for intelligent interpretation of remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1013-1022. |
[15] | YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1059-1067. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||