[1] IBRAHIM M R, HAWORTH J, CHENG Tao. Understanding cities with machine eyes:a review of deep computer vision in urban analytics[J]. Cities, 2020, 96:102481. [2] ZHANG Fan, WU Lun, ZHU Di, et al. Social sensing from street-level imagery:a case study in learning spatio-temporal urban mobility patterns[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 153:48-58. [3] ZHANG Junbo, ZHENG Yu, QI Dekang, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259:147-166. [4] OPENSHAW S, TAYLOR P. The modifiable areal unit problem[M]//WRIGLEY N, BENNETT R J. Quantitative Geography:A British View. London:Routledge, 1981:60-69. [5] ROSSER G, DAVIES T, BOWERS K J, et al. Predictive crime mapping:arbitrary grids or street networks?[J]. Journal of Quantitative Criminology, 2017, 33(3):569-594. [6] CHENG Tao, HAWORTH J, WANG Jiaqiu. Spatio-temporal autocorrelation of road network data[J]. Journal of Geographical Systems, 2012, 14(4):389-413. [7] CHENG Xingyi, ZHANG Ruiqing, ZHOU Jie, et al. Deeptransport:learning spatial-temporal dependency for traffic condition forecasting[C]//Proceedings of 2018 International Joint Conference on Neural Networks. Rio de Janeiro:IEEE, 2018. [8] SHIODE S. Street-level spatial scan statistic and STAC for analysing street crime concentrations[J]. Transactions in GIS, 2011, 15(3):365-383. [9] CHEN Huanfa, CHENG Tao, SHAWE-TAYLOR J. A balanced route design for min-max Multiple-Depot Rural Postman Problem (MMMDRPP):a police patrolling case[J]. International Journal of Geographical Information Science, 2018, 32(1):169-190. [10] CHENG Tao, HAWORTH J, ANBAROGLU B, et al. Spatio-temporal data mining[M]//FISCHER M, NIJKAMP P. Handbook of Regional Science. Berlin:Springer, 2019. [11] BOLLOBÁS B. Modern graph theory[M]. New York:Springer, 2019. [12] ORTEGA A, FROSSARD P, KOVAČEVIC'J, et al. Graph signal processing:overview, challenges, and applications[J]. Proceedings of the IEEE, 2018, 106(5):808-828. [13] ESTRADA E. Graph and network theory[J]. Developments in Water Science, 1988, 32:317-339. [14] HASHEMI H, ABDELGHANY K. End-to-end deep learning methodology for real-time traffic network management[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(10):849-863. [15] ZHANG Yang, CHENG Tao. Graph deep learning model for network-based predictive hotspot mapping of sparse spatio-temporal events[J]. Computers, Environment and Urban Systems, 2020, 79:101403. [16] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8):2554-2558. [17] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [18] CHO K, VAN MERRIËNBOER B, BAHDANAU D, et al. On the properties of neural machine translation:encoder-decoder approaches[C]//Proceedings of the 8th Workshop on Syntax, Semantics and Structure in Statistical Translation. Doha:Association for Computational Linguistics, 2014:103-111. [19] LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time-series[M]//ARBIB M A. The Handbook of Brain Theory and Neural Networks. Cambridge:MIT Press, 1995. [20] MONTI F, OTNESS K, BRONSTEIN M M. Motifnet:a motif-based graph convolutional network for directed graphs[C]//Proceedings of 2018 IEEE Data Science Workshop. Lausanne:IEEE, 2018:225-228. [21] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon:OpenReview, 2017:1-14. [22] ZHANG Yang. Graph deep learning models for network-based spatio-temporal data forecasting:from dense to sparse[D]. London:University College London, 2020. [23] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]//Proceedings of Annual Conference on Neural Information Processing Systems 2015. Montreal:[s.n.], 2015. [24] LIANG Ming, HU Xiaolin. Recurrent convolutional neural network for object recognition[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:3367-3375. [25] XU Zhenqi, LI Shan, DENG Weihong. Learning temporal features using LSTM-CNN architecture for face anti-spoofing[C]//Proceedings of the 20153rd IAPR Asian Conference on Pattern Recognition, Kuala Lumpur:IEEE, 2015:141-145. [26] HUANG C J, KUO P H. A deep cnn-lstm model for particulate matter (PM2.5) forecasting in smart cities[J]. Sensors, 2018, 18(7):2220. [27] LIU Yipeng, ZHENG Haifeng, FENG Xinxin, et al. Short-term traffic flow prediction with conv-LSTM[C]//Proceedings of the 20179th International Conference on Wireless Communications and Signal Processing (WCSP). Nanjing:IEEE, 2017:1-6. [28] ADEPEJU M, ROSSER G, CHENG Tao. Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions-a crime case study[J]. International Journal of Geographical Information Science, 2016, 30(11):2133-2154. [29] REN Yibin, CHENG Tao, ZHANG Yang. Deep spatio-temporal residual neural networks for road-network-based data modeling[J]. International Journal of Geographical Information Science, 2019, 33(9):1894-1912. [30] REN Yibin, CHEN Hao, HAN Yong, et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. International Journal of Geographical Information Science, 2020, 34(4):802-823. [31] ZHANG Yang, CHENG Tao, REN Yibin. A graph deep learning method for short-term traffic forecasting on large road networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(10):877-896. [32] MHASKAR H N, POGGIO T. Deep vs. shallow networks:an approximation theory perspective[J]. Analysis and Applications, 2016, 14(6):829-848. [33] KRAWCZYK B. Learning from imbalanced data:open challenges and future directions[J]. Progress in Artificial Intelligence, 2016, 5(4):221-232. [34] IBRAHIM M R, HAWORTH J, LIPANI A, et al. Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe[J]. PLoS One, 2021, 16(1):e0246120. [35] LAI Juntao. Urban place profiling using geo-referenced social media data[D]. London:University College London, 2019. [36] CHENG Tao, SHEN Jianan. Grouping people in cities:from space-time to place-time based profiling[M]//SHAW S L, SUI D. Human Dynamics Research in Smart and Connected Communities. Cham:Springer, 2018:181-201. [37] SHEN Jianan. Profiling and grouping space-time activity patterns of urban individuals[D]. London:University College London, 2017. [38] BRUCE C. Districting and resource allocation:a question of balance[J]. Geography&Public Safety, 2009, 1(4):1-3. [39] WANG Fahui. Why police and policing need GIS:an overview[J]. Annals of GIS, 2012, 18(3):159-171. [40] MITCHELL P S. Optimal selection of police patrol beats[J]. The Journal of Criminal Law, Criminology, and Police Science, 1972, 63(4):577-584. [41] ZHANG Yue, BROWN D E. Police patrol districting method and simulation evaluation using agent-based model&GIS[J]. Security Informatics, 2013, 2(1):7. [42] CHEN Huanfa, CHENG Tao, YE Xinyue. Designing efficient and balanced police patrol districts on an urban street network[J]. International Journal of Geographical Information Science, 2019, 33(2):269-290. [43] CHEN Huanfa. Developing police patrol strategies based on the urban street network[D]. London:University College London, 2019. [44] ZHOU Ming, JIN Jiarui, ZHANG Weinan, et al. Multi-agent reinforcement learning for order-dispatching via order-vehicle distribution matching[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing:ACM, 2019:2645-2653. [45] PARK S. ISPRS WG IV/8(GeoComputation and GeoSimulation) webinar[EB/OL].[2022-03-01].https://www.isprs.org/news/announcements/details.aspx?ID=277. |