[1] 肖俊文. 基于深度学习的遥感图像自适应道路提取方法研究[D]. 成都:成都信息工程大学,2019. XIAO Junwen. Research on adaptive road extraction method from remote sensing image based on deep learning[D]. Chengdu: Chengdu University of Information Technology, 2019. [2] 赵阳. 基于深度学习的遥感图像道路提取[D]. 西安: 西安电子科技大学, 2019. ZHAO Yang. Remote sensing image road extraction based on deep learning[D]. Xi'an: Xidian University, 2019. [3] 张永宏, 何静, 阚希, 等. 遥感图像道路提取方法综述[J]. 计算机工程与应用, 2018, 54(13): 1-10, 51. ZHANG Yonghong, HE Jing, KAN Xi, et al. Summary of road extraction methods for remote sensing images[J]. Computer Engineering and Applications, 2018, 54(13): 1-10, 51. [4] KESTUR R, FAROOQ S, ABDAL R, et al. UFCN: a fully convolutional neural network for road extraction in RGB imagery acquired by remote sensing from an unmanned aerial vehicle[J]. Journal of Applied Remote Sensing, 2018, 12(1): 016020. [5] 何磊, 李玉霞, 彭博, 等. 基于生成对抗网络的无人机图像道路提取[J]. 电子科技大学学报, 2019, 48(4): 580-585. HE Lei, LI Yuxia, PENG Bo, et al. Road extraction with UAV images based on generative adversarial networks[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(4): 580-585. [6] 季顺平, 魏世清.遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报,2019,48(4):448-459. DOI: 10.11947/j.AGCS.2019.20180206. JI Shunping, WEI Shiqing. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459. DOI: 10.11947/ j.AGCS.2019.20180206. [7] 戴激光, 王杨, 杜阳, 等. 光学遥感影像道路提取的方法综述[J]. 遥感学报, 2020, 24(7): 804-823. DAI Jiguang, WANG Yang, DU Yang, et al. Development and prospect of road extraction method for optical remote sensing image[J]. Journal of Remote Sensing, 2020, 24(7): 804-823. [8] 鲁德辉. 基于深度学习的遥感影像道路自动提取研究[D]. 成都: 电子科技大学, 2020. LU Dehui. Research on road automatic extraction of remote sensing image based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [9] 谢婷婷. 基于深度学习的遥感图像道路检测[D]. 汕头: 汕头大学, 2018. XIE Tingting. Road detection in remote sensing image based on deep learning[D]. Shantou: Shantou University, 2018. [10] 管来福. 基于深度学习的高分辨率遥感图像道路提取方法研究[D]. 武汉: 湖北工业大学, 2020. GUAN Laifu. Research on road extraction method of high resolution remote sensing image based on deep learning[D]. Wuhan: Hubei University of Technology, 2020. [11] KUSHNIR M, SHIMSHONI I. Epipolar geometry estimation for urban scenes with repetitive structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12): 2381-2395. [12] 段嘉旭. 基于单应性估计的多帧超声TOFD图像配准与降噪技术研究[D]. 成都: 西南交通大学, 2017. DUAN Jiaxu. Image registration and denoising of multi-frame ultrasonic TOFD images based on homography estimation[D]. Chengdu: Southwest Jiaotong University, 2017. [13] 孙商文, 刘宇, 徐昭洪, 等. 基于全局最优变换矩阵的图像拼接方法[J]. 兵器装备工程学报, 2020, 41(11): 207-211. SUN Shangwen, LIU Yu, XU Zhaohong, et al. Image stitching based on global optimal homography matrix[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11): 207-211. [14] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698. [15] 王智文. 几种边缘检测算子的性能比较研究[J]. 制造业自动化,2012,34(11):14-16. WANG Zhiwen. Comparative research of capability of several detection operators for edge detection [J]. Manufacturing Automation, 2012, 34(11):14-16. [16] 厉丹, 钱建生, 芦楠楠, 等. 图像边缘检测技术的改进[J]. 计算机工程与应用, 2010, 46(18): 164-166. LI Dan, QIAN Jiansheng, LU Nannan, et al. Improving of image edge detection technique[J]. Computer Engineering and Applications, 2010, 46(18): 164-166. [17] 高力, 金飞, 江振治, 等. 顾及形变的影像边缘ICP匹配技术[J]. 测绘通报, 2019(12): 40-44. GAO Li, JIN Fei, JIANG Zhenzhi, et al. ICP image matching technology considering distorted image edge[J]. Bulletin of Surveying and Mapping, 2019(12): 40-44. [18] 张波. 基于ICP和SVD的眼底图像配准研究[D]. 长春: 吉林大学, 2009. ZHANG Bo. Research on the ICP and the SVD of the fundus images registration methods[D]. Changchun: Jilin University, 2009. [19] YAN Li, DAI Jicheng, TAN Junxiang, et al. Global fine registration of point cloud in LiDAR SLAM based on pose graph[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 26-35. [20] ABDOLLAHI A, PRADHAN B, SHUKLA N, et al. Deep learning approaches applied to remote sensing datasets for road extraction: a state-of-the-art review[J]. Remote Sensing, 2020, 12(9): 1444. [21] HE Hao, WANG Shuyang, WANG Shicheng, et al. A road extraction method for remote sensing image based on encoder decoder network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25. [22] 宋廷强, 刘童心, 宗达, 等. 改进U-Net网络的遥感影像道路提取方法研究[J]. 计算机工程与应用, 2021, 57(14): 209-216. SONG Tingqiang, LIU Tongxin, ZONG Da, et al. Research on road extraction method from remote sensing images based on improved U-net network[J]. Computer Engineering and Applications, 2021, 57(14): 209-216. [23] RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1): 157-173. [24] 刘子伟. 融合结构化道路区域分割的车道线检测与跟踪算法研究[D]. 武汉: 武汉理工大学, 2019. LIU Ziwei. Research on lane detection and tracking algorithm based on structured road segmentation[D]. Wuhan: Wuhan University of Technology, 2019. [25] DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 101-110. [26] 王舒洋, 慕晓冬, 贺浩, 等. 航拍图像跨数据域特征迁移道路提取方法[J]. 测绘学报, 2020, 49(5): 611-621. DOI: 10.11947/j.AGCS.2020.20190274. WANG Shuyang, MU Xiaodong, HE Hao, et al. Feature-representation-transfer based road extraction method for cross-domain aerial images[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 611-621. DOI: 10.11947/j.AGCS.2020.20190274. [27] WANG Kexian, ZHENG Shunyi, LI Rui, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. [28] LYU Jingguo, YANG Xingbin, ZHANG Danlu, et al. High-resolution remote sensing image semi-global matching method considering geometric constraints of connection points and image texture information[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4):97-112. |