[1] HEIN G W. Status, perspectives and trends of satellite navigation[J]. Satellite Navigation, 2020, 1(1):1-12. [2] TEUNISSEN P J G, MONTENBRUCK O. Springer handbook of global navigation satellite systems[M]. Berlin:Springer, 2017. [3] YANG Y, MAO Y, SUN B. Basic performance and future developments of BeiDou global navigation satellite system[J]. Satellite Navigation, 2020, 1(1):1-8. [4] 杨元喜. 北斗卫星导航系统的进展, 贡献与挑战[J]. 测绘学报, 2010, 39(1):1-6. YANG Yuanxi. Progress, contribution and challenges of Compass/BeiDou satellite navigation system[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):1-6. [5] YANG Y, GAO W, GUO S, et al. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, 2019, 66(1):7-18. [6] YANG Y, LIU L, LI J, et al. Featured services and performance of BDS-3[J]. Science Bulletin, 2021, 66(20):2135-2143. [7] WABBENA G, SCHMITZ M, BAGGE A. PPP-RTK:precise point positioning using state-space representation in RTK networks[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation. Long Beach, CA:ION, 2005:2584-2594. [8] 张小红, 胡家欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9):1084. DOI:10.11947/j.AGCS.2020.20200328. ZHANG Xiaohong, HU Jiahuan, REN Xiaodong. New progress of PPP/PPP-RTK and positioning performance comparison of BDS/GNSS PPP[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9):1084. DOI:10.11947/j.AGCS.2020.20200328. [9] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7):389-399. [10] LAURICHESSE D, MERCIER F, BERTHIAS J P, et al. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination[J]. Navigation, 2009, 56(2):135-149. [11] COLLINS P, BISNATH S, LAHAYE F, et al. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing[J]. Navigation, 2010, 57(2):123-135. [12] TEUNISSEN P J G, ODIJK D, ZHANG B. PPP-RTK:results of CORS network-based PPP with integer ambiguity resolution[J]. Journal of Aeronautics, Astronautics and Aviation. Series A, 2010, 42(4):223-230. [13] 周峰, 徐天河. GPS/BDS/Galileo三频精密单点定位模型及性能分析[J]. 测绘学报, 2021, 50(1):61-70. DOI:10.11947/j.AGCS.2021.20200146. ZHOU Feng, XU Tianhe. Modeling and assessment of GPS/BDS/Galileo triple-frequency precise point positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1):61-70. DOI:10.11947/j.AGCS.2021.20200146. [14] TU R, ZHANG P, ZHANG R, et al. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations[J]. Journal of Geodesy, 2019, 93(6):837-47. [15] GU S, LOU Y, SHI C, et al. BeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable[J]. Journal of Geodesy, 2015, 89(10):979-992. [16] LI P, JIANG X, ZHANG X, et al. GPS+Galileo+BeiDou precise point positioning with triple-frequency ambiguity resolution[J]. GPS Solutions, 2020, 24(3):1-13. [17] XIAO G, LI P, GAO Y, et al. A unified model for multi-frequency PPP ambiguity resolution and test results with Galileo and BeiDou triple-frequency observations[J]. Remote Sensing, 2019, 11(2):116. [18] ODIJK D, ZHANG B, KHODABANDEH A, et al. On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory[J]. Journal of Geodesy, 2016, 90(1):15-44. [19] ZHANG B, TEUNISSEN P, ODIJK D. A novel undifferenced PPP-RTK concept[J]. Journal of Navigation, 2011, 64(S1):S180-S191. [20] 伍冠滨, 陈俊平, 伍晓勐, 等.基于非差非组合PPP-RTK的大气改正模型及其性能验证[J]. 测绘学报, 2020, 49(11):1407-1418. DOI:10.11947/j.AGCS.2020.20200103. WU Guanbin, CHEN Junping, WU Xiaomeng, et al. Modeling and assessment of regional atmospheric corrections based on undifferenced and uncombined PPP-RTK[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11):1407-1418. DOI:10.11947/j.AGCS.2020.20200103. [21] GENG J, BOCK Y. GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution[J]. Journal of Geodesy, 2016, 90(4):379-396. [22] BANVILLE S, COLLINS P, LAHAYE F. GLONASS ambiguity resolution of mixed receiver types without external calibration[J]. GPS Solutions, 2013, 17(3):275-282. [23] TEUNISSEN P J G. A new GLONASS FDMA model[J]. GPS Solutions, 2019, 23(4):1-19. [24] TEUNISSEN P J G, KHODABANDEH A. GLONASS ambiguity resolution[J]. GPS Solutions, 2019, 23(4):1-11. [25] HOU P, ZHANG B, LIU T. Integer-estimable GLONASS FDMA model as applied to Kalman-filter-based short- to long-baseline RTK positioning[J]. GPS Solutions, 2020, 24(4):1-14. [26] TEUNISSEN P J G. The ionosphere-weighted GPS baseline precision in canonical form[J]. Journal of Geodesy, 1998, 72(2):107-111. [27] ZHA J, ZHANG B, LIU T, et al. Ionosphere-weighted undifferenced and uncombined PPP-RTK:theoretical models and experimental results[J]. GPS Solutions, 2021, 25(4):1-12. [28] TEUNISSEN P J G. Generalized inverses, adjustment, the datum problem and S-transformations[M]. Berlin:Springer, 1985. [29] WANNINGER L. Carrier-phase inter-frequency biases of GLONASS receivers[J]. Journal of Geodesy, 2012, 86(2):139-148. [30] 李博峰, 沈云中. 基于等效残差积探测粗差的方差-协方差分量估计[J]. 测绘学报, 2011, 40(1):10-14. LI Bofeng, SHEN Yunzhong. Equivalent residual product based outlier detection for variance and covariance component estimation[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):10-14. [31] TEUNISSEN P J G. The least-squares ambiguity decorrelation adjustment:a method for fast GPS integer ambiguity estimation[J]. Journal of Geodesy, 1995, 70(1-2):65-82. [32] KHODABANDEH A, TEUNISSEN P J G. An analytical study of PPP-RTK corrections:precision, correlation and user-impact[J]. Journal of Geodesy, 2015, 89(11):1109-1132. [33] GAO Y, LÜ Z, ZHOU P, et al. Adaptive robust filtering algorithm for BDS medium and long baseline three carrier ambiguity resolution[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):53-61. |