Acta Geodaetica et Cartographica Sinica ›› 2023, Vol. 52 ›› Issue (5): 697-705.doi: 10.11947/j.AGCS.2023.20230503
• Express Paper • Next Articles
LI Xi, GONG Yu, CAO Hanrui
Received:2023-03-06
Revised:2023-05-04
Published:2023-05-27
Supported by:CLC Number:
LI Xi, GONG Yu, CAO Hanrui. Rapid response to Turkey-Syria earthquake using night-time light remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 697-705.
| [1] DE GROEVE T, SANTINI M, NECMIOGLU O, et al. Mw 7.8 and Mw 7.5 earthquakes in Turkey and Syria update of the EC-JRC scientific analysis[R]. Ispra:European Commission, 2023. [2] World Health Organization. WHO's flash appeal for the earthquake response in Turkey and Whole of Syria[R]. Geneva:WHO, 2023. [3] FAN Xiwei, NIE Gaozhong, DENG Yan, et al. Rapid detection of earthquake damage areas using VIIRS nearly constant contrast night-time light data[J]. International Journal of Remote Sensing, 2019, 40(5-6):2386-2409. [4] ZHAO Xizhi, YU Bailang, LIU Yan, et al. NPP-VIIRS DNB daily data in natural disaster assessment:evidence from selected case studies[J]. Remote Sensing, 2018, 10(10):1526. [5] European Commission. Report of activation on earthquake event in east Anatolian fault zone, republic of Turkey[R]. Brussels:European Commission, 2023. [6] United Nations Satellite Centre. Damage Assessment Istamo (Latakia) as of 9 February 2023[R]. Geneva:UNOSAT, 2023. [7] United Nations Satellite Centre. Damage assessment in Lilawa village, Jarablus district, Aleppo Governorate, Syria as of 7 February 2023[R]. Geneva:UNOSAT,, 92023. [8] SUBRAMANIAM T, MOGUL R, RENTON A, et al. Turkey-Syria earthquakes, February 2023[N]. COMET, 14 February 2023-02-14(1). [9] Huaxia. Chinese satellites deployed for Turkish earthquake relief[N]. people's daily online, 2023-02-17(1). [10] LI Xi, LI Deren. Can night-time light images play a role in evaluating the Syrian Crisis?[J]. International Journal of Remote Sensing, 2014, 35(18):6648-6661. [11] ZHENG Yuanmao, SHAO Guofan, TANG Lina, et al. Rapid assessment of a typhoon disaster based on NPP-VIIRS DNB daily data[J]. Remote Sensing, 2019, 11(14):1709. [12] LEVIN N, KYBA CHRISTOPHER C M, ZHANG Q, et al. Remote sensing of night lights:a review and an outlook for the future[J]. Remote Sensing of Environment, 2020, 237:111443. [13] 李德仁, 李熙. 论夜光遥感数据挖掘[J]. 测绘学报, 2015,44(6):591-601.DOI:10.11947/j.AGCS.2015.20150149. LI Deren, LI Xi. An overview on data mining of nighttime light remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6):591-601.DOI:10.11947/j.AGCS.2015.20150149. [14] SHI Kaifang, WU Yizhen, LIU Shirao, et al. Mapping and evaluating global urban entities (2000-2020):a novel perspective to delineate urban entities based on consistent nighttime light data[J]. GIScience & Remote Sensing, 2023, 60(1):2161199. [15] Ting,Hu,. Modeling the spatiotemporal dynamics of global electric power consumption (1992-2019) by utilizing consistent nighttime light data from DMSP-OLS and NPP-VIIRS[J]. Applied Energy, 2022, 322:119473. [16] LI Xi, LI Deren, XU Huimin, et al. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria's major human settlement during Syrian Civil War[J]. International Journal of Remote Sensing, 2017, 38(21):5934-5951. [17] LI Xue, LIU Zhumei, CHEN Xiaolin, et al. Assessment of the impact of the 2010 Haiti earthquake on human activity based on DMSP/OLS time series nighttime light data[J]. Journal of Applied Remote Sensing, 2019, 13(4):044515. [18] LI Xue, ZHAN Cong, TAO Jianbing, et al. Long-term monitoring of the impacts of disaster on human activity using DMSP/OLS nighttime light data:a case study of the 2008 Wenchuan, China earthquake[J]. Remote Sensing, 2018, 10(4):588. [19] ROMÁN M O, STOKES E C, SHRESTHA R, et al. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria[J]. PLoS One, 2019, 14(6):e0218883. [20] 许刚, 王传立, 孟庆祥, 等. COVID-19疫情初期美国城市夜间灯光时空变化分析[J]. 遥感学报, 2022, 26(9)1777-1788. XU Gang, WANG Chuanli, MENG Qingxiang, et al. Spatio-temporal variations of night-time lights at early stages of the COVID-19 epidemic in the United States[J]. Journal of Remote Sensing, 2022, 26(9)1777-1788. [21] ROMÁN M O, WANG Zh, SUN Q, et al. NASA's Black Marble nighttime lights product suite[J]. Remote Sensing of Environment, 2018, 210:113-143. [22] GUO Huadong, DOU Changyong, CHEN Hongyu, et al. SDGSAT-1:the world's first scientific satellite for sustainable development goals[J]. Science Bulletin, 2023, 68(1):34-38. [23] LIN Zirong, JIAO Weili, LIU Huichan, et al.Modelling the public perception of urban public space lighting based on SDGSAT-1 glimmer imagery:a case study in Beijing, China[J]. Sustainable Cities and Society, 2023, 88:104272. [24] ZHU Xiaolin, TAN Xiaoyue, LIAO Minglei, et al. Assessment of a new fine-resolution nighttime light imagery from the Yangwang-1("look up 1") satellite[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [25] KARAOSMANOǦLU S G, AC1KARAOǦLU E, HATUNOǦLU A, et al. Turkey-earthquake:emergency situation report[R]. New York:Support to Life,2023. [26] DAVE P, PASARI S. Effectiveness of PNL technique in disaster damage assessment:evidence from selective case studies[J]. IOP Conference Series:Earth and Environmental Science, 2022, 1032(1):012005. [27] WANG Z, ROMÁN M O, SUN Q, et al. Monitoring disaster-related power outages using nasa black marble nighttime light product[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-3:1853-1856. [28] YIN Zimin, LI Xi, TONG Fei, et al. Mapping urban expansion using night-time light images from Luojia1-01 and international space station[J]. International Journal of Remote Sensing, 2020, 41(7):2603-2623. [29] LI Xi, CHEN Xiaoling, ZHAO Yousong, et al. Automatic intercalibration of night-time light imagery using robust regression[J]. Remote Sensing Letters, 2013, 4(1):45-54. |
| [1] | Yuansheng HUA, Boyu CHEN, Xinlin LIU, Yun YANG, Song ZHU, Jiasong ZHU, Qingquan LI. Hybrid visual-inertial measurement method of subway tunnel settlement [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2182-2193. |
| [2] | Wei PENG, Jing YANG, Haiqiang FU, Jianjun ZHU, Dong ZENG. UAV-borne repeat-pass InSAR data processing method considering motion error characteristics [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1954-1967. |
| [3] | Chaolong YAO, Hongrui YOU, Xuanhui HE, Junya LU, Yiqian XIE, Qiong LI, Shuang ZHU, Zhicai LUO. A composite drought index derived from a combination of GNSS PWV/vertical deformation and GRACE/GRACE-FO data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1757-1768. |
| [4] | Hailu CHEN, Yunzhong SHEN. GNSS-assisted InSAR tropospheric delay correction model incorporating vertical stratification and turbulent components [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1786-1797. |
| [5] | Minfeng SONG, Xiufeng HE, Xiaolei WANG. Ground-based GNSS-IR ice period detection considering residual signal-to-noise ratio characteristics [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2295-2304. |
| [6] | LI Xin, MENG Shuolin, HUANG Guanwen, ZHANG Qin, LI Hanxu. Robust GNSS/SINS positioning based on the SE2(3)-EKF framework [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1640-1649. |
| [7] | LIU Tianjun, CHEN Qusen, JIANG Weiping, CHEN Hua, XIA Fengyu, FAN Caoming. Effect of satellite attitude quaternions on BeiDou precise point positioning during the eclipse season [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 550-558. |
| [8] | WANG Jianrong, YANG Yuanxi, HU Yan, LÜ Yuan, YANG Xiuce, LU Xueliang, CAO Bincai. Preliminary location accuracy assessments of GF-14 stereo mapping satellite without ground control points [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 8-14. |
| [9] | ZHANG Shuo, CHEN Liping, LI Tieying, YAN Yongzhe, DENG Xiangjin, GU Zheng, ZHENG Yanhong, MA Youqing, QI Chen, LIU Shaochuang. The positioning accuracy of the Lunar surface sampling and packaging mission of the Chang'e-5 probe [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 631-639. |
| [10] | TANG Xiaofang, ZHAN Zongqian, DING Jiujie, LIU Jiahui, XIONG Zirou. Superpixel spectral features-based automatic fuzzy clustering segmentation for UAV image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 677-690. |
| [11] | ZHOU Baoding, ZHANG Wenxiang, HUANG Jincai, LI Qingquan. Indoor and outdoor integrated pedestrian network construction based on crowdsourced data [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 718-728. |
| [12] | WANG Chenjie, LUO Bin, LI Chengyuan, WANG Wei, YIN Lu, ZHAO Qing. The collaborative mapping and navigation based on visual SLAM in UAV platform [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 767-776. |
| [13] | WANG Leyang, GAO Hua, FENG Guangcai. Triggering relations and stress effects analysis of two Mw>6 earthquakes in southwest Taiwan based on InSAR and GPS data [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1244-1253. |
| [14] | ZHANG Hengjing, CUI Dongdong, CHENG Pengfei. Height nonlinear velocity field and variance fluctuation model construction method for CORS stations [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1096-1106. |
| [15] | ZHAO Jianhu, LIANG Wenbiao. Some key points of submarine control network measurement and calculation [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1197-1202. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||