Acta Geodaetica et Cartographica Sinica ›› 2023, Vol. 52 ›› Issue (7): 1059-1073.doi: 10.11947/j.AGCS.2023.20220563
• Special Issue of Hyperspectral Remote Sensing Technology • Previous Articles Next Articles
LI Shutao1, WU Qiong1, KANG Xudong2
Received:
2022-09-30
Revised:
2023-06-20
Published:
2023-07-31
Supported by:
CLC Number:
LI Shutao, WU Qiong, KANG Xudong. Hyperspectral remote sensing image intrinsic information decomposition: advances and challenges[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1059-1073.
[1] 赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社, 2003:34-37. ZHAO Yingshi. Principles and methods of remote sensing application analysis[M]. Beijing:Science Press, 2003:34-37. [2] HU X, XIE C, FAN Z,et al.Hyperspectral anomaly detection using deep learning:a review[J]. Remote Sensing, 2022, 14(9):1973. [3] JIA J, WANG Y, CHEN J, et al.Status and application of advanced airborne hyperspectral imaging technology:a review[J]. Infrared Physics and Technology, 2020, 104:103115. [4] QIAN S.Hyperspectral satellites, evolution, and development history[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:7032-7056. [5] LU B, DAO P D, LIU J, et al.Recent advances of hyperspectral imaging technology and applications in agriculture[J]. Remote Sensing, 2020, 12(16):2659. [6] LU L, GONG Z, LIANG Y, et al.Retrieval of chlorophyll-a concentrations of class II water bodies of inland lakes and reservoirs based on ZY1-02D satellite hyperspectral data[J]. Remote Sensing, 2022, 14(8):1842. [7] ZHANG B, GUO B, ZOU B, et al.Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China[J]. Environmental Pollution, 2022, 300:118981. [8] SHIMONI M, HAELTERMAN R, PERNEEL C.Hyperspectral imaging for military and security applications:combining myriad processing and sensing techniques[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):101-117. [9] 刘冰, 左溪冰, 谭熊, 等. 高光谱影像分类的深度少样例学习方法[J]. 测绘学报, 2020, 49(10):1331-1342.DOI:10.11947/j.AGCS.2020.20190486. LIU Bing, ZUO Xibing, TAN Xiong, et al. A deep few-shot learning algorithm for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10):1331-1342.DOI:10.11947/j.AGCS.2020.20190486. [10] 孙一帆, 余旭初, 谭熊, 等. 面向小样本高光谱影像分类的轻量化关系网络[J]. 武汉大学学报信息科学版, 2022, 47(8):1336-1348. SUN Yifan, YU Xuchu, TAN Xiong, et al. Lightweight relational network for small sample hyperspectral image classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1336-1348. [11] XUE Z, NIE X. Low-rank and sparse representation with adaptive neighborhood regularization for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):73.DOI:10.11947/j.JGGS.2022.0108. [12] WANG K, ZHENG S, RUI L, et al. A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4):46-62.DOI:10.11947/j.JGGS.2021.0404. [13] 任智伟, 吴玲达. 基于本征图像分解的高光谱图像空谱联合分类[J]. 航天返回与遥感, 2019, 40(3):111-120. REN Zhiwei, WU Lingda. Spectral-spatial classification for hyperspectral imagery based on intrinsic image decomposition[J]. Spacecraft Recovery and Remote Sensing, 2019, 40(3):111-120. [14] GU Y, XIE W, LI X, et al.Hyperspectral intrinsic image decomposition with enhanced spatial information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5523014. [15] BARROW H, TENENBAUM J, HANSON A, et al. Recovering intrinsic scene characteristics[J]. Computer Vision Systems, 1978, 2:3-26. [16] KANG X, LI S, FANG L, et al.Intrinsic image decomposition for feature extraction of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2241-2253. [17] JIN X, GU Y, XIE W. Intrinsic hyperspectral image decomposition with DSM cues[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-13. [18] GAO G, LIU B, ZHANG X, et al.Multitemporal intrinsic image decomposition with temporal-spatial energy constraints for remote sensing image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-16. [19] HUANG Q, ZHU W, ZHAO Y, et al. Multispectral image intrinsic decomposition via subspace constraint[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:6430-6439. [20] JIN X, GU Y.Superpixel-based intrinsic image decomposition of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4285-4295. [21] JIN X, GU Y, LIU T. Intrinsic image recovery from remote sensing hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1):224-238. [22] BARRON J T, MALIK J. Shape, illumination, and reflectance from shading[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(8):1670-1687. [23] BARRON J T, MALIK J. High-frequency shape and albedo from shading using natural image statistics[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Colorado:IEEE, 2011:2521-2527. [24] BARRON J T, MALIK J. Shape, albedo, and illumination from a single image of an unknown object[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island:IEEE, 2012:334-341. [25] LAND E H, MCCANN J J. Lightness and retinex theory[J]. Josa, 1971, 61(1):1-11. [26] GROSSE R, JOHNSON M K, ADELSON E H, et al.Ground truth dataset and baseline evaluations for intrinsic image algorithms[C]//Proceedings of 2009 IEEE International Conference on Computer Vision.Kyoto:IEEE, 2009:2335-2342. [27] BELL M, FREEMAN E T. Learning local evidence for shading and reflectance[C]//Proceedings of 2001 IEEE International Conference on Computer Vision. Columbia:IEEE, 2001:670-677. [28] SHEN L, TAN P, LIN S. Intrinsic image decomposition with non-local texture cues[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Alaska:IEEE, 2008:1-7. [29] GARCES E, MUNOZ A, LOPEZ-MORENO J, et al. Intrinsic images by clustering[C]//Proceedings of 2012 Computer Graphics Forum.Oxford:Blackwell Publishing Ltd, 2012, 31(4):1415-1424. [30] CHEN Q, KOLTUN V. A simple model for intrinsic image decomposition with depth cues[C]//Proceedings of 2013 IEEE International Conference on Computer Vision.Sydney:IEEE, 2013:241-248. [31] SHEN L, YEO C, HUA B S. Intrinsic image decomposition using a sparse representation of reflectance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12):2904-2915. [32] LI K, WANG Y, YE X, et al.Sparse intrinsic decomposition and applications[J]. Signal Processing:Image Communication, 2021, 95:116281. [33] NARIHIRA T, MAIRE M, YU S X. Learning lightness from human judgement on relative reflectance[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:2965-2973. [34] ZHOU T, KRAHENBUHL P, EFROS A A. Learning data-driven reflectance priors for intrinsic image decomposition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Chile:IEEE, 2015:3469-3477. [35] SHEN J, YANG X, Li X, et al. Intrinsic image decomposition using optimization and user scribbles[J]. IEEE Transactions on Cybernetics, 2013, 43(2):425-436. [36] CHENG B, YANG J,YAN S, et al. Learning with L1-graph for image analysis[J]. IEEE Transactions on Image Processing, 2010, 19(4):858-866. [37] KAROUI M S, DEVILLE Y, BENHALOUCHE F Z, et al. Hypersharpening by joint-criterion nonnegative matrix factorization[J].IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3):1660-1670. [38] ZHANG K, ZUO W, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:3262-3271. [39] PIELLA G. Image fusion for enhanced visualization:avariational approach[J]. International Journal of Computer Vision, 2009, 83(1):1-11. [40] AIAZZI B, ALPARONE L, BARONTI S, et al. MTF-tailored multiscale fusion of high-resolution ms and pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(5):591-596. [41] RUBIN J M, RICHARDS W A. Color vision and image intensities:when are changes material?[J]. Biological Cybernetics, 1982, 45(3):215-226. [42] MOREL J M, PETRO A B, SBERT C. A PDE formalization of retinex theory[J]. IEEE Transactions on Image Processing, 2010, 19(11):2825-2837. [43] LI Z, SNAVELY N. Learning intrinsic image decomposition from watching the world[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:9039-9048. [44] KONG N, BLACK M J. Intrinsic depth:improving depth transfer with intrinsic images[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Chile:IEEE, 2015:3514-3522. [45] HACHAMA M, GHANEM B, WONKA P. Intrinsic scene decomposition from RGB-D images[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Chile:IEEE, 2015:810-818. [46] LAFFONT P Y, BAZIN J C. Intrinsic decomposition of image sequences from local temporal variations[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Chile:IEEE, 2015:433-441. [47] JEON J, CHO S, TONG X, et al. Intrinsic image decomposition using structure-texture separation and surface normals[C]//Proceedings of 2014 European Conference on Computer Vision. Switzerland:Springer, 2014:218-233. [48] YU L F, YEUNG S K, TAI Y W, et al.Shading-based shape refinement of RGB-D images[C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland:IEEE, 2013:1415-1422. [49] BARRON J T, MALIK J. High-frequency shape and albedo from shading using natural image statistics[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition.Colorado Springs:IEEE, 2011:2521-2528. [50] BASRI R, JACOBS D W, EMELMACHER I K. Photometric stereo with general,unknown lighting[J]. International Journal of Computer Vision, 2007, 72(3):239-257. [51] RAMAMOORTHI R, HANRAHAN P. An efficient representation for irradiance environment maps[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM Press, 2001:497-500. [52] CHOMBOON K, CHUJAI P, TEERARASSAMEE P, et al. An empirical study of distance metrics for k-nearest neighbor algorithm[C]//Proceedings of the 3rd International Conference on Industrial Application Engineering. Kitakyushu:IIAE, 2015:280-285. [53] JIN X, GU Y. Intrinsic scene properties from hyperspectral images and LiDAR[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019:1423-1431. [54] JIN X, GU Y, LIU T, et al.Supervoxel-based intrinsic scene properties from hyperspectral images and LiDAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-13. [55] DEBES C, MERENTITIS A, HEREMANS R, et al.Hyperspectral and LiDAR data fusion:outcome of the 2013 GRSS data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2405-2418. [56] XU Y, DU B, ZHANG L, et al.Advanced multi-sensor optical remote sensing for urban and use and land cover classification:outcome of the 2018 IEEE GRSS data fusion contest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6):1709-1724. [57] GAO G, LIU B, ZHANG X, et al.Multitemporal intrinsic image decomposition with temporal-spatial energy constraints for remote sensing image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-16. [58] DUAN P, LAI J, GHAMISI P, et al. Component decomposition-based hyperspectral resolution enhancement for mineral mapping[J]. Remote Sensing, 2020, 12(18):2903. |
[1] | DU Peijun, ZHANG Wei, ZHANG Peng, LIN Cong, GUO Shanchuan, HU Zezhou. A capsule network for hyperspectral image classification employing spatial-spectral feature [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1090-1104. |
[2] | FENG Ruyi, WANG Lizhe, ZENG Tieyong. Review of hyperspectral remote sensing image subpixel information extraction [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1187-1201. |
[3] | YANG Bisheng, CHEN Chi, DONG Zhen. 3D geospatial information extraction of urban objects for smart surveying and mapping [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1476-1484. |
[4] | LIU Jingnan, LUO Yarong, GUO Chi, GAO Kefu. PNT intelligence and intelligent PNT [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828. |
[5] | WANG Jiayao, WU Fang, YAN Haowen. Cartography:its past, present and future [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 829-842. |
[6] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[7] | LIU Yu, GUO Hao, LI Haifeng, DONG Weihua, PEI Tao. A note on GeoAI from the perspective of geographical laws [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1062-1069. |
[8] | WANG Quan, YOU Shucheng. Research and application outlook of land satellite remote sensing monitoring system [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 534-543. |
[9] | LI Deren, XU Xiaodi, SHAO Zhenfeng. On geospatial information science in the era of IoE [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 1-8. |
[10] | ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, JI Song, YU Ying, LAI Guangling. Progress and challenges of geospatial artificial intelligence [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146. |
[11] | AI Tinghua. Some thoughts on deep learning enabling cartography [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. |
[12] | SHEN Li, XU Zhu, LI Zhilin, LIU Wanzeng, CUI Bingliang. From geographic information service to geographic knowledge service: research issues and development roadmap [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1194-1202. |
[13] | ZHANG Jixian, LI Haitao, GU Haiyan, ZHANG He, YANG Yi, TAN Xiangrui, LI Miao, SHEN Jing. Study on man-machine collaborative intelligent extraction for natural resource features [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1023-1032. |
[14] | SHI Wenzhong, ZHANG Min. Artificial intelligence for reliable object recognition from remotely sensed data: overall framework design, review and prospect [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1049-1058. |
[15] | YANG Bisheng, HAN Xu, DONG Zhen. A deep learning network for semantic labeling of large-scale urban point clouds [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1059-1067. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||