[1] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3):333-382. [2] 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7):1485-1519.DOI:10.11947/j.AGCS.2022.20220224. LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping:opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1485-1519.DOI:10.11947/j.AGCS.2022.20220224. [3] SONG Song, YU Chen, MELDEBEKOVA M, et al. Normal fault slips of the March 2021 Greece earthquake sequence from InSAR observations[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1):50-59. [4] HANSSEN R F. Radar interferometry:data interpretation and error analysis[M]. Dordrecht:Springer, 2001. [5] LIU G, ZBIGNIEW P, STEFANO S, et al. Land surface displacement geohazards monitoring using multi-temporal InSAR techniques[J]. Journal of Geodesy and Geoinformation Science, 2021,4(1):77-87. [6] KRIEGER G, FIEDLER H, MOREIRA A. Bi- and multistatic SAR:potentials and challenges[EB/OL].[2022-11-10]. https://elib.dlr.de/6192/1/090_Krieger.pdf. [7] 邵凯, 张厚喆, 秦显平, 等. 分布式InSAR编队卫星精密绝对和相对轨道确定[J]. 测绘学报, 2021, 50(5):580-588.DOI:10.11947/j.AGCS.2021.20200415. SHAO Kai, ZHANG Houzhe, QIN Xianping, et al. Precise absolute and relative orbit determination for distributed InSAR satellite system[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5):580-588.DOI:10.11947/j.AGCS.2021.20200415. [8] 楼良盛, 缪剑, 陈筠力, 等. 卫星编队InSAR系统设计系列关键技术[J]. 测绘学报, 2022, 51(7):1372-1385. DOI:10.11947/j.AGCS.2022.20220110. LOU Liangsheng, MIAO Jian, CHEN Junli, et al. Key issues of InSAR system designment based on satellite formation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1372-1385. DOI:10.11947/j.AGCS.2022.20220110. [9] KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X:a satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3317-3341. [10] BELLO J L B, MARTONE M, KRAUS T, et al. Performance evaluation of TanDEM-X experimental modes[C]//Proceedings of 2014 European Conference on Synthetic Aperture Radar. Berlin:VDE,2014:284-287. [11] BUESO-BELLO J L, MARTONE M, PRATS-IRAOLA P, et al. First characterization and performance evaluation of bistatic TanDEM-X experimental products[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3):1058-1071. [12] PINHEIRO M, REIGBER A, SCHEIBER R, et al. Generation of highly accurate DEMs over flat areas by means of dual-frequency and dual-baseline airborne SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4361-4390. [13] WANG Zhongbin, WANG Yachao, WANG Bingnan, et al. Multi-frequency interferometric coherence characteristics analysis of typical objects for coherent change detection[J]. Remote Sensing, 2022, 14(7):1689. [14] DING Zegang, WANG Zhen, WANG Yan, et al. Refined multifrequency interferometric SAR phase unwrapping for extremely steep terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-20. [15] PEPE A, CALÒ F. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of earth's surface displacements[J]. Applied Sciences, 2017, 7(12):1264. [16] LIU Aifang, ZHOU Chaowei, XU Hui, et al. N-SAR-SG:the second generation airborne SAR system in N-SAR series with multi-band capability[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium.Kuala Lumpur:IEEE, 2022:7464-7467. [17] XU Huaping, KANG Changhui. Equivalence analysis of accuracy of geolocation models for spaceborne InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):480-490. [18] 王超, 张红, 刘智. 星载合成孔径雷达干涉测量[M]. 北京:科学出版社, 2002:33-37. WANG Chao, ZHANG Hong, LIU Zhi. Spaceborne synthetic aperture radar interferometry[M]. Beijing:Science Press, 2002:33-37. [19] LI Shun, YU Anxi, ZHU Xiaoxiang, et al. Research on alternating bistatic mode of spaceborne dual-antenna InSAR system[C]//Proceedings of 2018 IEEE International Conference on Signal and Image Processing.Shenzhen:IEEE, 2018:473-477. [20] EINEDER M, ADAM N. A maximum-likelihood estimator to simultaneously unwrap, geocode, and fuse SAR interferograms from different viewing geometries into one digital elevation model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1):24-36. [21] 徐华平, 李春升, 张家伟. 微波成像雷达信号统计特性:随机过程理论的应用[M]. 北京:北京航空航天大学出版社, 2018:120-124. XU Huaping, LI Chunsheng, ZHANG Jiawei. Statistical characteristics of microwave imaging radar signals:application of stochastic process theory[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2018:120-124. [22] ZEBKER H A, VILLASENSOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959. [23] ZEBKER H A, WERNER C L, ROSEN P A, et al. Accuracy of topographic maps derived from ERS-1 interferometric radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):823-836. [24] WANG Teng, LIAO Mingsheng, PERISSIN D. InSAR coherence-decomposition analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(1):156-160. [25] FIEDLER H, BOERNER E, MITTERMAYER J, et al. Total zero Doppler steering-a new method for minimizing the Doppler centroid[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):141-145. [26] JUST D, BAMLER R. Phase statistics of interferograms with applications to synthetic aperture radar[J]. Applied Optics, 1994, 33(20):4361-4368. [27] GATELLI F, MONTI GUAMIERI A, PARIZZI F, et al. The wavenumber shift in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):855-865. |