Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (4): 589-598.doi: 10.11947/j.AGCS.2024.20230594
• Real-time Remote Sensing Mapping • Next Articles
Weiying XIE(), Zixuan WANG(), Yunsong LI
Received:
2024-01-02
Revised:
2024-03-22
Published:
2024-05-13
Contact:
Zixuan WANG
E-mail:wyxie@xidian.edu.cn;zxwang1002@stu.xidian.edu.cn
About author:
XIE Weiying (1988—), female, PhD, professor, PhD supervisor, majors in on-orbit processing and analysis of remote sensing images. E-mail: wyxie@xidian.edu.cn
Supported by:
CLC Number:
Weiying XIE, Zixuan WANG, Yunsong LI. Efficient-communication on-orbit distributed hyperspectral image processing[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 589-598.
Tab. 1
The results of hyperspectral image classification"
方法 | OA | AA | Kappa系数 | 压缩比 | |
---|---|---|---|---|---|
SGD | 0.812 2 | 0.884 3 | 0.786 8 | 1× | |
QSGD | 0.798 6 | 0.878 6 | 0.770 9 | 8× | |
signSGD | 0.769 7 | 0.851 2 | 0.739 4 | 32× | |
DGC | 0.777 2 | 0.845 2 | 0.746 7 | 32× | |
0.708 3 | 0.820 6 | 0.670 9 | 1000× | ||
AC-SGD | 0.786 3 | 0.859 4 | 0.757 6 | 32× | |
0.751 7 | 0.843 6 | 0.718 7 | 1000× | ||
MCGQ | 0.812 3 | 0.880 1 | 0.787 2 | 32× | |
0.702 2 | 0.807 7 | 0.663 8 | 1000× |
Tab. 2
The results of multi-modal scene classification"
方法 | OA | AA | Kappa系数 | 压缩比 |
---|---|---|---|---|
SGD | 0.933 8 | 0.935 8 | 0.928 1 | 1× |
QSGD | 0.945 2 | 0.945 7 | 0.940 5 | 8× |
signSGD | 0.928 5 | 0.934 0 | 0.922 4 | 32× |
DGC | 0.929 2 | 0.935 1 | 0.928 3 | 32× |
0.927 4 | 0.936 2 | 0.921 2 | 1000× | |
AC-SGD | 0.930 3 | 0.938 1 | 0.924 3 | 32× |
0.907 5 | 0.915 0 | 0.899 6 | 1000× | |
MCGQ | 0.935 1 | 0.933 9 | 0.929 5 | 32× |
0.919 7 | 0.927 7 | 0.911 6 | 1000× |
Tab. 3
Results of simulation experiments on multi-modal scene classification"
方法 | OA | AA | Kappa系数 | 压缩比 |
---|---|---|---|---|
SGD | 0.904 9 | 0.603 6 | 0.862 6 | 1× |
QSGD | 0.901 2 | 0.601 1 | 0.859 6 | 8× |
signSGD | 0.884 6 | 0.579 6 | 0.840 1 | 32× |
DGC | 0.887 5 | 0.587 8 | 0.849 8 | 32× |
0.876 9 | 0.572 4 | 0.834 6 | 1000× | |
AC-SGD | 0.890 2 | 0.588 9 | 0.847 6 | 32× |
0.868 7 | 0.554 7 | 0.817 7 | 1000× | |
MCGQ | 0.897 5 | 0.584 6 | 0.847 8 | 32× |
0.876 7 | 0.567 8 | 0.824 1 | 1000× |
[1] | VERAVERBEKE S, DENNISON P, GITAS I, et al. Hyperspectral remote sensing of fire: state-of-the-art and future perspectives[J]. Remote Sensing of Environment, 2018, 216:105-121. |
[2] | 赵文波. “中国高分” 科技重大专项在对地观测发展历程中的阶段研究[J]. 遥感学报, 2019, 23(6):1036-1045. |
ZHAO Wenbo. Phase research and practice of upgrading earth observation from test application to system effectiveness in China[J]. Journal of Remote Sensing, 2019, 23(6):1036-1045. | |
[3] | HAUT J M, PAOLETTI M E, MORENO-ÁLVAREZ S, et al. Distributed deep learning for remote sensing data interpretation[J]. Proceedings of the IEEE, 2021, 109(8):1320-1349. |
[4] | BI Qi, QIN Kun, ZHANG Han, et al. APDC-net: attention pooling-based convolutional network for aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9):1603-1607. |
[5] | ZHU R, YAN L, MO N, et al. Attention-based deep feature fusion for the scene classification of high-resolution remote sensing images[J]. Remote Sensing, 2019, 11(17):1996. |
[6] | ZHANG Wei, TANG Ping, ZHAO Lijun. Remote sensing image scene classification using CNN-CapsNet[J]. Remote Sensing, 2019, 11(5):494. |
[7] | XU Kejie, HUANG Hong, LI Yuan, et al. Multilayer feature fusion network for scene classification in remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11):1894-1898. |
[8] | WANG Zeqin, WEN Ming, XU Yuedong, et al. Communication compression techniques in distributed deep learning: a survey[J]. Journal of Systems Architecture, 2023, 142:102927. |
[9] | SEIDE F, FU Hao, DROPPO J, et al. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs[C]//Proceedings of the 5th annual conference of the international speech communication association. Singapore: ACM Press, 2014. |
[10] | BERNSTEIN J, WANG Y X, AZIZZADENESHELI K, et al. SignSGD: compressed optimisation for non-convex problems[C]//Proceedings of 2018 International Conference on Machine Learning. New York: PMLR, 2018: 560-569. |
[11] | WEN Wei, XU Cong, YAN Feng, et al. TernGrad: ternary gradients to reduce communication in distributed deep learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM Press, 2017: 1508-1518. |
[12] | ALISTARH D, GRUBIC D, LI J Z, et al. QSGD: communication-efficient SGD via gradient quantization and encoding[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM Press, 2017: 1707-1718. |
[13] | ZHENG S, HUANG Z, KWOK J. Communication-efficient distributed blockwise momentum SGD with error-feedback[C]//Proceedings of 2019 Advances in Neural Information Processing Systems. Vancouver: Curran Associates, Inc, 2019. |
[14] | KARIMIREDDY S P, REBJOCK Q, STICH S, et al. Error feedback fixes signsgd and other gradient compression schemes[C]//Proceedings of 2019 International Conference on Machine Learning. California: PMLR, 2019: 3252-3261. |
[15] | FAGHRI F, TABRIZIAN I, MARKOV I, et al. Adaptive gradient quantization for data-parallel SGD[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM Press, 2020: 3174-3185. |
[16] | GUO J, LIU W, WANG W, et al. Accelerating distributed deep learning by adaptive gradient quantization[C]//Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020: 1603-1607. |
[17] | SONG L, ZHAO K, PAN P, et al. Communication efficient SGD via gradient sampling with Bayes prior[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. |
[18] | LIN Yujun, HAN Song, MAO Huizi, et al. Deep gradient compression: reducing the communication bandwidth for distributed training[C]//Proceedings of 2018 International Conference on Learning Representations. Vancouver: OpenReview.net, 2018: 2458-2467. |
[19] | STICH S U, CORDONNIER J B, JAGGI M. Sparsified SGD with memory[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM Press, 2018: 4452-4463. |
[20] | ALHAM F A, KENNETH H. Sparse communication for distributed gradient descent [C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 440-445. |
[21] | CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[M]. Cambridge: MIT Press, 2022. |
[22] | DUTTA A, BERGOU E H, ABDELMONIEM A M, et al. On the discrepancy between the theoretical analysis and practical implementations of compressed communication for distributed deep learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4):3817-3824. |
[23] | WANG Huazheng, KIM S, MCCORD-SNOOK E, et al. Variance reduction in gradient exploration for online learning to rank[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM Press, 2019: 835-844. |
[24] | BOUNEFFOUF D. Exponentiated gradient exploration foractive learning[J]. Computers, 2016, 5(1):1. |
[25] | ABRAHAMYAN L, CHEN Y, BEKOULIS G, et al. Learned gradient compression for distributed deep learning[J]. IEEE Trans Neural Netw Learn Syst, 2022, 33(12):7330-7344. |
[26] | TAO Zeyi, XIA Qi, LI Qun, et al. CE-SGD: communication-efficient distributed machine learning[C]//Proceedings of 2021 IEEE Global Communications Conference. Madrid: IEEE, 2021: 1-7. |
[27] | IVKIN N, ROTHCHILD D, ULLAH E, et al. Communication-efficient distributed SGD with sketching[J]. Advances in Neural Information Processing Systems, 2019, 32. |
[28] | BASU D, DATA D, KARAKUS C, et al. Qsparse-local-SGD: distributed SGD with quantization, sparsification and local computations[J]. Advances in Neural Information Processing Systems, 2019, 32. |
[29] | LU Qu, LIU Wantao, HAN Jizhong, et al. Multi-stage gradient compression: overcoming the communication bottleneck in distributed deep learning[C]//Proceedings of 2018 International Conference on Neural Information Processing. Cham: Springer, 2018: 107-119. |
[30] | SATTLER F, WIEDEMANN S, MULLER K R, et al. Sparse binary compression: towards distributed deep learning with minimal communication[C]//Proceedings of 2019 International Joint Conference on Neural Networks. Budapest: IEEE, 2019: 1-8. |
[31] | HU Kaifan, WU Chengkun, ZHU En. HGC: hybrid gradient compression in distributed deep learning[M]//Advances in Artificial Intelligence and Security. Cham: Springer International Publishing, 2021: 15-27. |
[32] | SHAH S M, LAU V K N. Model compression for communication efficient federated learning [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34:5937-5951. |
[33] | YAN Guangfeng, LI Tan, HUANG Shaolun, et al. AC-SGD: adaptively compressed SGD for communication-efficient distributed learning[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(9):2678-2693. |
[34] | MORDIDO G, VAN KEIRSBILCK M, KELLER A. Monte carlo gradient quantization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE. 2020: 718-719. |
[35] | WANG Hongyi, SIEVERT S, CHARLES Z, et al. ATOMO: communication-efficient learning via atomic sparsification[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM Press, 2018: 9872-9883. |
[36] | YU Mingchao, LIN Zhifeng, NARRA K, et al. GradiVeQ: vector quantization for bandwidth-efficient gradient aggregation in distributed CNN training[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM Press, 2018: 5129-5139. |
[37] | VOGELS T, KARIMIREDDY S P, JAGGI M. PowerSGD: practical low-rank gradient compression for distributed optimization[J]. Advances in Neural Information Processing Systems, 2019, 32. |
[38] | YURTSEVER A, UDELL M, TROPP J, et al. Sketchy decisions: convex low-rank matrix optimization with optimal storage[C]//Proceedings of 2017 Artificial Intelligence and Statistics. Lauderdale: PMLR. 2017. |
[39] | GUNASEKAR S, LEE J, SOUDRY D, et al. Characterizing implicit bias in terms of optimization geometry[C]//Proceedings of 2018 International Conference on Machine Learning. New York: PMLR, 2018: 1832-1841. |
[40] | LI Daixun, XIE Weiying, LI Yunsong, et al. FedFusion: manifold-driven federated learning for multi-satellite and multi-modality fusion[J]. IEEE Transactions onGeoscience and Remote Sensing, 2024, 62:1-13. |
[41] | HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3130716. |
[42] | DING Kexing, LU Ting, FU Wei, et al. Global-local transformer network for HSI and LiDAR data joint classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3216319. |
[43] | DENBY B, LUCIA B. Orbital edge computing: nanosatellite constellations as a new class of computer system[C]//Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems. Lausanne: ACM Press, 2020: 939-954. |
[44] | ROY S K, DERIA A, HONG Danfeng, et al.Multimodal fusion transformer for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3286826. |
[45] | SHEN Dunbin, MA Xiaorui, KONG Wenfeng, et al. Hyperspectral target detection based on interpretable representation network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3302950. |
[1] | Mi WANG, Beibei GUO, Yingdong PI, Zhiqi ZHANG, Jing XIAO, Rongfan DAI, Shao XIANG. On-orbit processing technology and verification of Luojia-3 01 satellite [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 599-609. |
[2] | SUN Genyun, LI Renren, ZHANG Aizhu, AN Na, FU Hang, PAN Zhaojie. Band selection algorithm for reverse nearest neighbor density peak clustering of hyperspectral images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 8-19. |
[3] | SUN Yifan, LIU Bing, YU Xuchu, TAN Xiong, YU Anzhu. A high-resolution feature network image-level classification method for hyperspectral image [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(1): 50-64. |
[4] | DU Qian, XIE Weiying. Adversarial autoencoder for hyperspectral anomaly detection [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1105-1114. |
[5] | YU Xuchu, LIU Bing, XUE Zhixiang. Potential analysis and prospect of hyperspectral ground object recognition [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1115-1125. |
[6] | ZHANG Yichao, ZHENG Xiangtao, LU Xiaoqiang. Hyperspectral image classification method based on hierarchical transformer network [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1139-1147. |
[7] | SUN Genyun, FU Hang, ZHANG Aizhu, REN Jinchang. Singular spectrum analysis method for hyperspectral imagery feature extraction: a review and evaluation [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1148-1163. |
[8] | HANG Renlong, LI Chengxiang, LIU Qingshan. Inter-spectral contrast learning based unsupervised feature extraction for hyperspectral images [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1164-1174. |
[9] | HU Xin, WANG Xinyu, ZHONG Yanfei. Adaptive context aggregation network for H2 remote sensing imagery classification [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1175-1186. |
[10] | ZHANG Mengmeng, LI Wei, LIU Huan, ZHAO Xudong, TAO Ran. Classification of hyperspectral forest tree species based on morphological transform and spatial logical integration [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(7): 1202-1211. |
[11] | SONG Shangzhen, YANG Yixin, WANG Huifeng, WANG Xiaoyan, RONG Shenghui, ZHOU Huixin. Hyperspectral anomaly detection combining sparse constraint and feature extraction via stacked autoencoder [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 932-943. |
[12] | GAO Kuiliang, LIU Bing, YU Anzhu, XU Baiqi, HU Wei, HU Jiawei. An unsupervised meta learning method for hyperspectral images few-shot classification [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1941-1952. |
[13] | LIU Han, WU Chengmao, LI Changxing. Robust hyperspectral image clustering integrating total Bregman divergence and bipartite graph [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1749-1759. |
[14] | LI Deren, WANG Mi, YANG Fang. A new generation of intelligent mapping and remote sensing scientific test satellite Luojia-3 01 [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 789-796. |
[15] | WANG Mi, WU Qianyu. Key problems of remote sensing images intelligent service for constellation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1008-1016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||