Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (7): 1308-1320.doi: 10.11947/j.AGCS.2024.20230017
• Geodesy and Navigation • Previous Articles Next Articles
Chuanguang ZHU1(), Jixian ZHANG2,3(), Sichun LONG1, Ronghua YANG1, Wenhao WU1, Liya ZHANG1
Received:
2023-01-16
Published:
2024-08-12
Contact:
Jixian ZHANG
E-mail:zhucg@hnust.edu.cn;zhangjx@casm.ac.cn
About author:
ZHU Chuanguang (1984—), male, PhD, associate professor, majors in theories and application of InSAR. E-mail: zhucg@hnust.edu.cn
Supported by:
CLC Number:
Chuanguang ZHU, Jixian ZHANG, Sichun LONG, Ronghua YANG, Wenhao WU, Liya ZHANG. Phase estimation of distributed scatterer based on singular value decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1308-1320.
[1] | BAMLER R, HARTL P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4):R1-R54. |
[2] | FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. |
[3] | SAMIEI-ESFAHANY S, MARTINS J E, VAN LEIJEN F, et al. Phase estimation for distributed scatterers in InSAR stacks using integer least squares estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):5671-5687. |
[4] | 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. |
ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. | |
[5] | 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7):1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. |
LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. | |
[6] | FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanents catterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. |
[7] | HOOPER A, SEGALL P, ZEBKER, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Jorunal of Geophysical Research (Solid Earth), 2007, 112(B7):B07407. |
[8] | HOOPER A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302. |
[9] | BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. |
[10] | GUARNIERI A M, TEBALDINI S. On the exploitation of target statistics for SAR interferometry applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11):3436-3443. |
[11] | ANSARI H, DE ZAN F, BAMLER R. Sequential estimator: toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5637-5652. |
[12] | EVEN M, SCHULZ K. InSAR deformation analysis with distributed scatterers: a review complemented by new advances[J]. Remote Sensing, 2018, 10(5):744. |
[13] | CAO Ning, LEE H, JUNG H C. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9):1838-1842. |
[14] | FORNARO G, VERDE S, REALE D, et al. CAESAR: an approach based on covariance matrix decomposition to improve multibaseline-multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2050-2065. |
[15] | TEBALDINI S, MONTI A. Methods and performances for multi-pass SAR interferometry[M]//Geoscience and Remote Sensing New Achievements. Slavka: InTech, 2010: 329-356. |
[16] | ZEBKER H A, CHEN K. Accurate estimation of correlation in InSAR observations[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):124-127. |
[17] | FERRETTI A, FUMAGALLI A, NOVALI F, et al. Process for filtering interferograms obtained from SAR images acquired on the same area: US8711029[P/OL]. [2023-01-16].http://www.freepatentsonline.com/8711029.html. |
[18] | ZHAO Changjun, LI Zhen, TIAN Bangsen, et al. A ground surface deformation monitoring InSAR method using improved distributed scatterers phase estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4543-4553. |
[19] | ROCCA F, RUCCI A, FERRETTI A, et al. Advanced InSAR interferometry for reservoir monitoring[J]. First Break, 2013, 31:77-85. |
[20] | ANSARI H, DE ZAN F, BAMLER R. Efficient phase estimation for interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):4109-4125. |
[21] | CAO Ning, LEE H, JUNG H C. A phase-decomposition-based PSInSAR processing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):1074-1090. |
[22] | 祝传广, 张继贤, 邓喀中, 等. 基于改进MT-InSAR的日兰高铁巨野煤田段沉降监测[J]. 煤炭学报, 2022, 47(3):1031-1042. |
ZHU Chuanguang, ZHANG Jixian, DENG Kazhong, et al. Monitoring and analysis of subsidence along Ri-Lan high-speed railway at Juye coalfield based on the improved MT-InSAR[J]. Journal of China Coal Society, 2022, 47(3):1031-1042. | |
[23] | LI Shijin, ZHANG Shubi, LI Tao, et al. An adaptive phase optimization algorithm for distributed scatterer phase history retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:3914-3926. |
[24] | WANG Yunqi, ZHANG Kui, GONG Faming, et al. Interferometric phase reconstruction based on probability generative model: toward efficient analysis of high-dimensional SAR stacks[J]. Remote Sensing, 2021, 13(12):2369. |
[25] | 赵超英, 王宝行. SAR干涉图降噪的稳健协方差矩阵分解法[J]. 测绘学报, 2019, 48(1):24-33. DOI: 10.11947/j.AGCS.2019.20170394. |
ZHAO Chaoying, WANG Baohang. SAR interferogram denoising based on robust covariance matrix decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):24-33. DOI: 10.11947/j.AGCS.2019.20170394. | |
[26] | SONG Huina, ZHANG Bowen, WANG Mengyuan, et al. A fast phase optimization approach of distributed scatterer for multitemporal SAR data based on Gauss-seidel method[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:4013505. |
[27] | XIAO Ruya, HE Xiufeng, GAO Zhuang, et al. Phase estimation for distributed scatterers by alternating projection[J]. IEEE Journal on Miniaturization for Air and Space Systems, 2022, 3(4):204-210. |
[28] | ZHANG Kui, SONG Ruiqing, WANG Hui, et al. Interferometric phase reconstruction using simplified coherence network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:1-9. |
[29] | CASU F, ELEFANTE S, IMPERATORE P, et al. SBAS-DInSAR parallel processing for deformation time-series computation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8):3285-3296. |
[30] | WANG Shunyao, ZHANG Guo, CHEN Zhenwei, et al. A refined parallel stacking InSAR workflow for large-scale deformation fast extraction—a case study of Tibet[J]. Geocarto International, 2022, 37(27):16074-16085. |
[31] | MORISHITA Y, LAZECKY M, WRIGHT T J, et al. LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor[J]. Remote Sensing, 2020, 12(3):424. |
[32] | LAZECKÝ M, SPAANS K, GONZÁLEZ P J, et al. LiCSAR: an automatic InSAR tool for measuring and monitoring tectonic and volcanic activity[J]. Remote Sensing, 2020, 12(15):2430. |
[33] | ZINNO I, BONANO M, BUONANNO S, et al. National scale surface deformation time series generation through advanced DInSAR processing of Sentinel-1 data within a cloud computing environment[J]. IEEE Transactions on Big Data, 2020, 6(3):558-571. |
[34] | MA Zhangfeng, LIU Jihong, AOKI Y, et al. Towards big SAR data era: an efficient Sentinel-1 near-real-time InSAR processing workflow with an emphasis on co-registration and phase unwrapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188:286-300. |
[35] | 张贤达. 矩阵分析与应用[M]. 2版. 北京: 清华大学出版社, 2013: 288-295. |
ZHANG Xianda. Matrix analysis and applications[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 288-295. | |
[36] | GOODMAN J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66:1145-1150. |
[37] | MADSEN S N. Speckle theory: modelling, analysis, and applications related to synthetic aperture radar data[D]. Lyngby: Technical University of Denmark, 1986. |
[38] | MACEDO H D. Gaussian elimination is not optimal, revisited[J]. Journal of Logical and Algebraic Methods in Programming, 2016, 85:999-1010. |
[39] | GOLUB G H, VAN LOAN C F. Matrix computations[M]. 4th ed. Baltimore: Johns Hopkins University Press, 2013. |
[40] | ROKHLIN V, SZLAM A, TYGERT M. A randomized algorithm for principal component analysis[J]. SIAM Journal on Matrix Analysis and Applications, 2009, 31(3):1100-1124. |
[41] | OKŠA G, VAJTERŠIC M. Efficient pre-processing in the parallel block-Jacobi SVD algorithm[J]. Parallel Computing, 2006, 32(2):166-176. |
[42] | ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959. |
[43] | MORISHITA Y, HANSSEN R F. Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):1096-1104. |
[44] | ROCCA F. Modeling interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10):3289-3299. |
[45] | EVEN M. A study on algorithms and parameter settings for DS preprocessing[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 3975-3978. |
[46] | PARIZZI A, CONG X, EINEDER M. First results from multifrequency interferometry. A comparison of different decorrelation time constants at L, C, and X Band[C]//Proceedings of 2009 ESA Fringe Workshop. [S.l.]: DLR, 2009. |
[47] | GUARNIERI A M, TEBALDINI S. Hybrid Cramér-Rao bounds for crustal displacement field estimators in SAR interferometry[J]. IEEE Signal Processing Letters, 2007, 14(12):1012-1015. |
[48] | YAGÜE-MARTÍNEZ N, PRATS-IRAOLA P, RODRÍGUEZ GONZÁLEZ F, et al. Interferometric processing of Sentinel-1 TOPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2220-2234. |
[49] | HAMPEL F R. The influence curve and its role in robust estimation[J]. Journal of the American Statistical Association, 1974, 69(346):383-393. |
[50] | ROUSSEEUW P J, CROUX C. Alternatives to the median absolute deviation[J]. Journal of the American Statistical Association, 1993, 88(424):1273-1283. |
[1] | WU Wenhao, ZHANG Lei, ZHANG Tengxu, WANG Mingzhou, LONG Sichun, DUAN Meng, ZHOU Zhiwei, ZHU Chuanguang. Advanced ESD coregistration of inteferometric processing for Sentinel-1 TOPS data [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(11): 1451-1462. |
[2] | DONG Yang, FAN Dazhao, JI Song, LEI Rong. The Purification Method of Matching Points Based on Principal Component Analysis [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 228-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||