Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (7): 1321-1335.doi: 10.11947/j.AGCS.2024.20230050
• Marine Survey • Previous Articles Next Articles
Jinwei BU1(), Kegen YU2(), Qiulan WANG1, Linghui LI1, Xinyu LIU1, Xiaoqing ZUO1, Jun CHANG3
Received:
2023-02-22
Published:
2024-08-12
Contact:
Kegen YU
E-mail:b_jinwei@kust.edu.cn;kegen.yu@cumt.edu.cn
About author:
BU Jinwei (1992—), male, PhD, majors in GNSS-R. E-mail: b_jinwei@kust.edu.cn
Supported by:
CLC Number:
Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335.
Tab.3
Accuracy of comparison between the significant wave height retrieved by different models on the test data set and ERA5 data"
模型 | RMSE/m | Bias/m | CC | MAPE/(%) |
---|---|---|---|---|
经验模型(DDMA方法) | 0.715 | 0.004 | 0.49 | 31.18 |
经验模型(LEWS方法) | 0.709 | 0.001 | 0.51 | 30.78 |
经验模型(DDMA+LEWS方法) | 0.709 | 0.002 | 0.51 | 30.85 |
BT | 0.423 | -0.013 | 0.85 | 15.14 |
SVM | 0.564 | 0.047 | 0.72 | 22.00 |
ANN | 0.455 | 0.001 | 0.83 | 16.75 |
GloWH-Net | 0.330 | 0.032 | 0.91 | 12.19 |
Accuracy of comparison between the significant wave height retrieved by different models on the test data set and WW3 data"
模型 | RMSE/m | Bias/m | CC | MAPE/(%) |
---|---|---|---|---|
经验模型(DDMA方法) | 0.757 | 0.050 | 0.48 | 32.02 |
经验模型(LEWS方法) | 0.757 | -0.031 | 0.48 | 33.44 |
经验模型(DDMA+LEWS方法) | 0.757 | 0.046 | 0.48 | 32.09 |
BT | 0.483 | 0.033 | 0.83 | 16.65 |
SVM | 0.625 | 0.097 | 0.69 | 23.17 |
ANN | 0.502 | 0.039 | 0.81 | 17.98 |
GloWH-Net | 0.393 | 0.073 | 0.89 | 14.29 |
Tab.5
Accuracy of comparison between the significant wave height retrieved by different models on the test data set and AVISO data"
模型 | RMSE/m | Bias/m | CC | MAPE/(%) |
---|---|---|---|---|
经验模型(DDMA方法) | 0.707 | -0.015 | 0.46 | 30.19 |
经验模型(LEWS方法) | 0.801 | -0.371 | 0.47 | 39.25 |
经验模型(DDMA+LEWS方法) | 0.730 | -0.193 | 0.47 | 33.93 |
BT | 0.453 | -0.021 | 0.82 | 16.51 |
SVM | 0.551 | 0.042 | 0.72 | 21.75 |
ANN | 0.469 | -0.012 | 0.81 | 17.36 |
GloWH-Net | 0.433 | 0.019 | 0.84 | 15.16 |
Tab.6
Performance statistics of SWH retrieval using different auxiliary variables as input parameters for the GloWH-Net model"
辅助变量参数 | RMSE/m | Bias/m | CC | MAPE/m |
---|---|---|---|---|
未考虑 | 0.413 | -0.027 | 0.86 | 15.28 |
降雨(RI) | 0.422 | 0.004 | 0.86 | 15.26 |
风速(WS) | 0.336 | 0.035 | 0.91 | 12.19 |
风向(WD) | 0.345 | -0.034 | 0.91 | 13.15 |
水深(wd) | 0.413 | -0.007 | 0.86 | 14.95 |
RI+WS+WD+wd | 0.257 | -0.024 | 0.95 | 9.88 |
[1] | SOULAT F, CAPARRINI M, GERMAIN O, et al. Sea state monitoring using coastal GNSS-R[J]. Geophysical Research Letters, 2004, 31(21):L21303. |
[2] | SHAH R, GARRISON J L, EGIDO A, et al. Bistatic radar measurements of significant wave height using signals of opportunity in L-, S-, and Ku-bands [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):826-841. |
[3] | ALONSO-ARROYO A, CAMPS A, PARK H, et al. Retrieval of significant wave height and mean sea surface level using the GNSS-R interference pattern technique: results from a three-month field campaign [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6):3198-3209. |
[4] | 王鑫, 孙强, 张训械, 等. 中国首次岸基GNSS-R海洋遥感实验[J]. 科学通报, 2008, 53(5):589-592. |
WANG Xin, SUN Qiang, ZHANG Xunxie, et al. The first shore-based GNSS-R ocean remote sensing experiment in China[J]. Chinese Science Bulletin, 2008, 53(5):589-592. | |
[5] | 邵连军, 张训械, 王鑫, 等. 利用GNSS-R信号反演海浪波高[J]. 武汉大学学报(信息科学版), 2008, 33(5):475-478. |
SHAO Lianjun, ZHANG Xunxie, WANG Xin, et al. Sea surface wave height retrieve using GNSS-R signals[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):475-478. | |
[6] | 金玲. GNSS-R接收机及有效波高反演方法研究[D]. 北京: 北京化工大学, 2016. |
JIN Ling. Research on receiver and inversion method of significant wave height based on GNSS-R[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
[7] | 李颖, 朱雪瑗, 崔璨, 等. 船载GNSS-R有效波高测量的初步研究[J]. 海洋环境科学, 2016, 35(2):180-183. |
LI Ying, ZHU Xueyuan, CUI Can, et al. Preliminary study on ship-borne significant wave height measurement using GNSS-R signals[J]. Marine Environmental Science, 2016, 35(2):180-183. | |
[8] | 徐飞, 孙协昌, 刘馨宁, 等. 利用机载GNSS-R的有效波高反演技术[J]. 飞行器测控学报, 2017, 36(3):212-218. |
XU Fei, SUN Xiechang, LIU Xinning, et al. A method of retrieval of significant wave height using airborne GNSS-R[J]. Journal of Spacecraft TT & C Technology, 2017, 36(3):212-218. | |
[9] | QIN Lingyu, LI Ying. Significant wave height estimation using multi-satellite observations from GNSS-R[J]. Remote Sensing, 2021, 13(23):4806. |
[10] | 俞永庆. 岸基GNSS反射信号有效波高反演研究[J]. 无线电工程, 2021, 51(10):1075-1079. |
YU Yongqing. Retrieval of significant wave height using coastal GNSS reflectometry[J]. Radio Engineering, 2021, 51(10):1075-1079. | |
[11] | 张一, 周立. 基于NARX回归神经网络的岸基GNSS-IR有效波高反演模型分析[J]. 测绘通报, 2022(2):90-94. |
ZHANG Yi, ZHOU Li. Study on inversion model of significant wave height from shore-based GNSS-IR by using NARX recurrent neural network[J]. Bulletin of Surveying and Mapping, 2022(2):90-94. | |
[12] | WANG Xiaolei, HE Xiufeng, SHI Jian, et al. Estimating sea level, wind direction, significant wave height, and wave peak period using a geodetic GNSS receiver[J]. Remote Sensing of Environment, 2022, 279:113135. |
[13] | ALPERS W, HASSELMANN K. Spectral signal to clutter and thermal noise properties of ocean wave imaging synthetic aperture radars[J]. International Journal of Remote Sensing, 1982, 3(4):423-446. |
[14] | PENG Qin, JIN Shuanggen. Significant wave height estimation from space-borne cyclone-GNSS reflectometry[J]. Remote Sensing, 2019, 11(5):584. |
[15] | YANG Shuai, JIN Shuanggen, JIA Yan, et al. Significant wave height estimation from joint CYGNSS DDMA and LES observations[J]. Sensors, 2021, 21(18):6123. |
[16] | BU Jinwei, YU Kegen. Significant wave height retrieval method based on spaceborne GNSS reflectometry[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1503705. |
[17] | BU Jinwei, YU Kegen. A new integrated method of CYGNSS DDMA and LES measurements for significant wave height estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1505605. |
[18] | 布金伟, 余科根, 韩帅. 星载GNSS-R海浪有效波高反演模型构建[J]. 测绘学报, 2022, 51(9):1920-1930. DOI: 10.11947/j.AGCS.2022.20210284. |
BU Jinwei, YU Kegen, HAN Shuai. Construction of spaceborne GNSS-R ocean waves significant wave height retrieval model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9):1920-1930. DOI: 10.11947/j.AGCS.2022.20210284. | |
[19] | ASGARIMEHR M, ARNOLD C, WEIGEL T, et al. GNSS reflectometry global ocean wind speed using deep learning: development and assessment of CyGNSSnet[J]. Remote Sensing of Environment, 2022, 269:112801. |
[20] | WANG Feng, YANG Dongkai, YANG Lei. Retrieval and assessment of significant wave height from CYGNSS mission using neural network[J]. Remote Sensing, 2022, 14(15):3666. |
[21] | WANG Changyang, YU Kegen, ZHANG Kefei, et al. Significant wave height retrieval based on multivariable regression models developed with CYGNSS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:4200415. |
[22] | BU Jinwei, YU Kegen, ZHU Feiyang, et al. Joint retrieval of sea surface rainfall intensity, wind speed, and wave height based on spaceborne GNSS-R: a case study of the oceans near China[J]. Remote Sensing, 2023, 15(11):2757. |
[23] | BU Jinwei, YU Kegen, PARK H, et al. Estimation of swell height using spaceborne GNSS-R data from eight CYGNSS satellites[J]. Remote Sensing, 2022, 14(18):4634. |
[24] | CLARIZIA M P, RUF C S, JALES P, et al. Spaceborne GNSS-R minimum variance wind speed estimator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):6829-6843. |
[25] | REYNOLDS J, CLARIZIA M P, SANTI E. Wind speed estimation from CYGNSS using artificial neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:708-716. |
[26] | WANG Changyang, YU Kegen, QU Fangyu, et al. Spaceborne GNSS-R wind speed retrieval using machine learning methods[J]. Remote Sensing, 2022, 14(14):3507. |
[27] | ERTUGRUL Ö F. A novel type of activation function in artificial neural networks: trained activation function[J]. Neural Networks, 2018, 99:148-157. |
[28] | BU Jinwei, YU Kegen, NI Jun, et al. Combining ERA5 data and CYGNSS observations for the joint retrieval of global significant wave height of ocean swell and wind wave: a deep convolutional neural network approach[J]. Journal of Geodesy, 2023, 97(8):81. |
[29] | SOISUVARN S, JELENAK Z, SAID F, et al. The GNSS reflectometry response to the ocean surface winds and waves [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10):4678-4699. |
[1] | BU Jinwei, YU Kegen, HAN Shuai. Construction of spaceborne GNSS-R ocean waves significant wave height retrieval model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1920-1930. |
[2] | SONG Yue, LI Houpu, ZHAI Guojun. Comparative analysis of airborne laser bathymetric waveforms denoising algorithms [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 270-278. |
[3] | . A Semi-empirical Model for the Correction of Terrain Influences in SAR Backscattering [J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4): 0-441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||